DocumentDB: Comparing Emulation Internals with MongoDB
MongoDB is the leading database for document data modeling, with its Atlas service available on AWS, Azure, and Google Cloud. Its popularity has led to the development of compatible APIs by other vendors, like Amazon DocumentDB (with MongoDB compatibility), highlighting MongoDB's importance in modern applications. Microsoft did the same for CosmosDB and developed a MongoDB emulation on PostgreSQL called DocumentDB, now part of the Linux Foundation.
AWS has joined the project. While today Amazon DocumentDB uses its own Aurora‑based proprietary engine, AWS’s participation opens the possibility that, in the future, the managed service could leverage this PostgreSQL‑based extension.
An emulation cannot truly replace MongoDB, which was designed to store, index, and process documents with flexible schema natively instead of using fixed-size blocks and relational tables, but may help in their transition. This article tests a simple query across three options: native MongoDB, PostgreSQL with the DocumentDB extension, and Oracle Database’s emulation - another emulation on top another RDBMS. They encounter similar challenges: implementing document semantics on top of a row-based engine. The aim is to demonstrate an evaluation method, including execution plans, to assess the pros and cons of each platform in relation to relevant application patterns, rather than specific use cases.
MongoDB
I create a simple collection with one field "nnn", indexed, and insert random values between 0 and 100:
db.franck.drop();
db.franck.createIndex({nnn:1});
void db.franck.insertMany(
Array.from({ length: 100000 }, () => (
{ nnn: (Math.random() * 100)}
))
);
I query values between 20 and 80, displaying the first five for pagination:
db.franck.find(
{ nnn: { $gte: 20, $lt: 80 } }
).sort({ nnn: 1 }).limit(5)
[
{ _id: ObjectId('68b37f883c2e2550c0d51c0c'), nnn: 20.00087217392812 },
{ _id: ObjectId('68b37f883c2e2550c0d5dd3c'), nnn: 20.000927538131542 },
{ _id: ObjectId('68b37f883c2e2550c0d5f1e7'), nnn: 20.000979995906974 },
{ _id: ObjectId('68b37f883c2e2550c0d59dc4'), nnn: 20.001754428025208 },
{ _id: ObjectId('68b37f883c2e2550c0d66c4f'), nnn: 20.002357317589414 }
]
Here is the execution plan with execution statistics:
db.franck.find(
{ nnn: { $gte: 20, $lt: 80 } }
).sort({ nnn: 1 }).limit(5).explain("executionStats").executionStats
{
executionSuccess: true,
nReturned: 5,
executionTimeMillis: 0,
totalKeysExamined: 5,
totalDocsExamined: 5,
executionStages: {
isCached: false,
stage: 'LIMIT',
nReturned: 5,
executionTimeMillisEstimate: 0,
works: 6,
advanced: 5,
needTime: 0,
needYield: 0,
saveState: 0,
restoreState: 0,
isEOF: 1,
limitAmount: 5,
inputStage: {
stage: 'FETCH',
nReturned: 5,
executionTimeMillisEstimate: 0,
works: 5,
advanced: 5,
needTime: 0,
needYield: 0,
saveState: 0,
restoreState: 0,
isEOF: 0,
docsExamined: 5,
alreadyHasObj: 0,
inputStage: {
stage: 'IXSCAN',
nReturned: 5,
executionTimeMillisEstimate: 0,
works: 5,
advanced: 5,
needTime: 0,
needYield: 0,
saveState: 0,
restoreState: 0,
isEOF: 0,
keyPattern: { nnn: 1 },
indexName: 'nnn_1',
isMultiKey: false,
multiKeyPaths: { nnn: [] },
isUnique: false,
isSparse: false,
isPartial: false,
indexVersion: 2,
direction: 'forward',
indexBounds: { nnn: [ '[20, 80)' ] },
keysExamined: 5,
seeks: 1,
dupsTested: 0,
dupsDropped: 0
}
}
}
}
MongoDB scanned the index (stage: 'IXSCAN'
) on "nnn" (keyPattern: { nnn: 1 }
) for values between 20 and 80 (indexBounds: { nnn: [ '[20, 80)' ]
). It examined 5 index entries (keysExamined: 5
) and fetched the corresponding documents, resulting in 5 documents read (docsExamined: 5
). It stopped (LIMIT
) after returning the documents for the result (nReturned: 5
).
We achieved exactly what we needed without any unnecessary work, so no further tuning is required. We could go further, like with a covering index to avoid the FETCH stage, but it's not needed as the number of documents fetched is low and bounded.
PostgreSQL with DocumentDB
To gain a comprehensive understanding of the emulation, I examine both the execution plan from the emulation and the execution plan in the underlying database. I begin by starting a container with DocumentDB.
I start a container for my lab using the DocumentDB image from the Microsoft repo, which will later move to the Linux Foundation, and I use the default ports.
docker run -d -p 10260:10260 -p 9712:9712 --name pgddb \
ghcr.io/microsoft/documentdb/documentdb-local:latest \
--username ddb --password ddb
I add auto-explain to show all execution plans for my lab:
## add auto-explain extension to be loaded
docker exec -it pgddb sed -e '/shared_preload_libraries/s/,/, auto_explain,/' -i /home/documentdb/postgresql/data/postgresql.conf
## bounce the instance
docker restart -t 5 pgddb
# set auto-explain by default for the emulation gateway
psql -e 'postgres://documentdb@localhost:9712/postgres' <<'SQL'
\dconfig shared_preload_libraries
alter user ddb set auto_explain.log_analyze=on;
alter user ddb set auto_explain.log_buffers=on;
alter user ddb set auto_explain.log_format=text;
alter user ddb set auto_explain.log_min_duration=0;
alter user ddb set auto_explain.log_nested_statements=on;
alter user ddb set auto_explain.log_settings=on;
alter user ddb set auto_explain.log_timing=on;
alter user ddb set auto_explain.log_triggers=on;
alter user ddb set auto_explain.log_verbose=on;
alter user ddb set auto_explain.log_wal=on;
SQL
# tail the PostgreSQL log in the background to see the execution plan
docker exec -it pgddb tail -f /home/documentdb/postgresql/data/pglog.log | grep -v " LOG: cron job" &
# connect to the MogoDB emulation gateway
mongosh 'mongodb://ddb:ddb@localhost:10260/?tls=true&tlsAllowInvalidCertificates=true'
I create the same collection and index as in my MongoDB test, run the same query, and check the execution plan:
db.franck.find(
{ nnn: { $gte: 20, $lt: 80 } }
).sort({ nnn: 1 }).limit(5).explain("executionStats").executionStats
{
nReturned: Long('5'),
executionTimeMillis: Long('154'),
totalDocsExamined: Long('5'),
totalKeysExamined: Long('5'),
executionStages: {
stage: 'LIMIT',
nReturned: Long('5'),
executionTimeMillis: Long('154'),
totalKeysExamined: Long('5'),
totalDocsExamined: 5,
numBlocksFromCache: 4415,
numBlocksFromDisk: 0,
inputStage: {
stage: 'SORT',
nReturned: Long('5'),
executionTimeMillis: Long('154'),
totalKeysExamined: Long('5'),
totalDocsExamined: 5,
sortMethod: 'top-N heapsort',
totalDataSizeSortedBytesEstimate: 26,
numBlocksFromCache: 4415,
numBlocksFromDisk: 0,
inputStage: {
stage: 'FETCH',
nReturned: Long('59935'),
executionTimeMillis: Long('133'),
totalKeysExamined: Long('59935'),
indexName: 'nnn_1',
totalDocsRemovedByIndexRechecks: 0,
numBlocksFromCache: 4415,
numBlocksFromDisk: 0,
inputStage: {
stage: 'IXSCAN',
nReturned: Long('59935'),
executionTimeMillis: Long('133'),
totalKeysExamined: Long('59935'),
indexName: 'nnn_1',
totalDocsRemovedByIndexRechecks: 0,
numBlocksFromCache: 4415,
numBlocksFromDisk: 0
}
}
}
}
}
DocumentDB scanned the index (stage: 'IXSCAN'
), identifying the index name but lacking details on key patterns or index bounds. It appears to have read the correct range (from 20 to 80) but did not apply pagination efficiently, as evidenced by the high volume of index entries read (totalKeysExamined: Long('59935'), nReturned: Long('59935')
). All documents were retrieved (stage: 'FETCH'
, nReturned: Long('59935')
) and sorted for pagination (stage: 'SORT'
, sortMethod: 'top-N heapsort'
). Ultimately, this process returned the final result of 5 documents (stage: 'LIMIT'
, nReturned: Long('5')
), discarding the thousands of documents read.
While the query and result are similar to MongoDB, the execution differs significantly. MongoDB avoids reading all documents and sorting them because its index not only helps find a range but also returns results in order.
To grasp the underlying reasons for this difference, we need more than just the execution plan of the emulation. I installed auto-explain in my lab to analyze the execution plan in PostgreSQL:
2025-08-31 17:20:47.765 UTC [416] LOG: duration: 160.621 ms plan:
Query Text: EXPLAIN (FORMAT JSON, ANALYZE True, VERBOSE True, BUFFERS True, TIMING True) SELECT document FROM documentdb_api_catalog.bson_aggregation_find($1, $2)
Query Parameters: $1 = 'test', $2 = '\x5f0000000266696e6400070000006672616e636b000366696c7465720022000000036e6e6e00180000001024677465001400000010246c740050000000000003736f7274000e000000106e6e6e000100000000106c696d6974000500000000'
Limit (cost=517.87..517.88 rows=5 width=68) (actual time=160.617..160.618 rows=5 loops=1)
Output: document, (bson_orderby(document, 'BSONHEX0e000000106e6e6e000100000000'::documentdb_core.bson))
Buffers: shared hit=4447, temp read=1860 written=2002
-> Sort (cost=517.87..580.37 rows=25000 width=68) (actual time=160.615..160.616 rows=5 loops=1)
Output: document, (bson_orderby(document, 'BSONHEX0e000000106e6e6e000100000000'::documentdb_core.bson))
Sort Key: (bson_orderby(collection.document, 'BSONHEX0e000000106e6e6e000100000000'::documentdb_core.bson)) NULLS FIRST
Sort Method: top-N heapsort Memory: 26kB
Buffers: shared hit=4447, temp read=1860 written=2002
-> Index Scan using nnn_1 on documentdb_data.documents_2 collection (cost=0.00..102.62 rows=25000 width=68) (actual time=98.698..138.723 rows=59973 loops=1)
Output: document, bson_orderby(document, 'BSONHEX0e000000106e6e6e000100000000'::documentdb_core.bson)
Index Cond: (collection.document @<> 'BSONHEX3f000000036e6e6e0035000000106d696e0014000000106d61780050000000086d696e496e636c75736976650001086d6178496e636c757369766500000000'::documentdb_core.bson)
Buffers: shared hit=4439, temp read=1860 written=2002
Settings: search_path = 'documentdb_api_catalog, documentdb_api, public'
The steps are similar but more detailed at the PostgreSQL level. The index access utilizes the @<>
operator, which checks if a BSON value is within a specified range via a RUM index (DocumentDB uses an extended version of RUM index which provides more metadata than a GIN index). In this case, the index was applied solely for filtering, while a separate Sort step managed the final ordering. This method requires reading all documents before they can be ordered. Although the example is simple, indexed fields may contain arrays, which means a forward scan must return entries in order based on the smallest in the array. This behavior is native to MongoDB but not in PostgreSQL, and it likely explains why entries can't be retrieved in the desired order in the current version of DocumentDB.
Note that you might see a Bitmap Scan before auto-vacuum runs, but it's important to recognize that an Index Scan is also possible, which is a key distinction from GIN indexes.
The definition of the table and index is visible from PostgreSQL:
postgres=# \d documentdb_data.documents_2
Table "documentdb_data.documents_2"
Column | Type | Collation | Nullable | Default
-----------------+--------------------------+-----------+----------+---------
shard_key_value | bigint | | not null |
object_id | documentdb_core.bson | | not null |
document | documentdb_core.bson | | not null |
creation_time | timestamp with time zone | | |
Indexes:
"collection_pk_2" PRIMARY KEY, btree (shard_key_value, object_id)
"documents_rum_index_3" documentdb_rum (document documentdb_api_catalog.bson_rum_single_path_ops (path=nnn, tl='2699'))
Check constraints:
"shard_key_value_check" CHECK (shard_key_value = '2'::bigint)
DocumentDB uses Citus for sharding, and an extended version of RUM indexes documentdb_rum
for indexes:
postgres=# select indexdef, tablename, indexname
from pg_indexes
where schemaname='documentdb_data'
;
indexdef | tablename | indexname
-------------------------------------------------------------------------------------------------------------------------------------------------------------------------+-------------+-----------------------
CREATE UNIQUE INDEX collection_pk_1 ON documentdb_data.documents_1 USING btree (shard_key_value, object_id) | documents_1 | collection_pk_1
CREATE UNIQUE INDEX retry_1_pkey ON documentdb_data.retry_1 USING btree (shard_key_value, transaction_id) | retry_1 | retry_1_pkey
CREATE INDEX retry_1_object_id_idx ON documentdb_data.retry_1 USING btree (object_id) | retry_1 | retry_1_object_id_idx
CREATE UNIQUE INDEX collection_pk_2 ON documentdb_data.documents_2 USING btree (shard_key_value, object_id) | documents_2 | collection_pk_2
CREATE UNIQUE INDEX retry_2_pkey ON documentdb_data.retry_2 USING btree (shard_key_value, transaction_id) | retry_2 | retry_2_pkey
CREATE INDEX retry_2_object_id_idx ON documentdb_data.retry_2 USING btree (object_id) | retry_2 | retry_2_object_id_idx
CREATE INDEX documents_rum_index_3 ON documentdb_data.documents_2 USING documentdb_rum (document documentdb_api_catalog.bson_rum_single_path_ops (path=nnn, tl='2699')) | documents_2 | documents_rum_index_3
(7 rows)
Here is the list of extensions installed:
postgres=# \dx
List of installed extensions
Name | Version | Schema | Description
-----------------+---------+------------+------------------------------------------------------------
documentdb | 0.104-0 | public | API surface for DocumentDB for PostgreSQL
documentdb_core | 0.104-0 | public | Core API surface for DocumentDB on PostgreSQL
pg_cron | 1.6 | pg_catalog | Job scheduler for PostgreSQL
plpgsql | 1.0 | pg_catalog | PL/pgSQL procedural language
postgis | 3.5.3 | public | PostGIS geometry and geography spatial types and functions
rum | 1.3 | public | RUM index access method
tsm_system_rows | 1.0 | public | TABLESAMPLE method which accepts number of rows as a limit
vector | 0.8.0 | public | vector data type and ivfflat and hnsw access methods
(8 rows)
In my example, DocumentDB performed more work than MongoDB because the sort operation was not pushed down to the index scan. Achieving ordered results from a multi-key index is challenging due to multiple index entries per document. The scan must deduplicate these entries and arrange them correctly: the lowest array value for a forward scan and the greatest for a backward scan. MongoDB implemented this functionality from the get-go in its multi-key indexes. Emulation on top of SQL databases still requires further development to match the performance and scalability, as RDBMS were not designed for multi-key indexes, as one-to-many relationships are typically managed in separate tables according to the first normal form. This remains a TODO in the code for DocumentDB's RUM index access method.
The order by pushdown is not the only limitation. If you cannot read the five index entries needed for the query, you should at least try to avoid fetching thousands of documents. In MongoDB, using a covering index will replace the FETCH stage with a PROJECTION_COVERED stage. I attempted the same in DocumentDB by omitting the "_id" from the projection:
db.franck.find(
{ nnn: { $gte: 20, $lt: 80 } },
{ _id: 0, nnn: 1 }
).sort({ nnn: 1 }).limit(5).hint({nnn:1, _id:1 }).explain("executionStats").executionStats
{
nReturned: Long('5'),
executionTimeMillis: Long('170'),
totalDocsExamined: Long('5'),
totalKeysExamined: Long('5'),
executionStages: {
stage: 'LIMIT',
nReturned: Long('5'),
executionTimeMillis: Long('170'),
totalKeysExamined: Long('5'),
totalDocsExamined: 5,
numBlocksFromCache: 4607,
numBlocksFromDisk: 0,
inputStage: {
stage: 'PROJECT',
nReturned: Long('5'),
executionTimeMillis: Long('170'),
totalKeysExamined: Long('5'),
totalDocsExamined: 5,
numBlocksFromCache: 4607,
numBlocksFromDisk: 0,
inputStage: {
stage: 'SORT',
nReturned: Long('5'),
executionTimeMillis: Long('170'),
totalKeysExamined: Long('5'),
totalDocsExamined: 5,
sortMethod: 'top-N heapsort',
totalDataSizeSortedBytesEstimate: 25,
numBlocksFromCache: 4607,
August 31, 2025
Replacing a cache service with a database
August 28, 2025
Updates to the Same Value: MongoDB Optimization
In MongoDB, if you update a field to the same value it already has, the database query layer optimizes the operation by skipping index writes when no indexed fields change, and avoiding rewriting the document when no fields are different. These updates happen more often than you might think — for example, when an ORM updates all fields instead of just the changed ones to minimize the number of statements to parse, when an application saves all data from the UI, even if they come from a previous read, or during periodic syncs from external systems that provide a full snapshot rather than incremental changes.
SQL update to the same value
Before exposing this in MongoDB, here is an example on PostgreSQL. I create a simple table with one indexed column, the primary key, and one unindexed column:
create table test as
select
generate_series(1,1000) as key,
'hello world' as val
;
alter table test add primary key (key)
;
create index on test (val)
;
vacuum analyze test
;
I update the unindexed column to the same value (set val=val
) for one row (where key = 42
) in a loop (\watch
), and look at the number of WAL records generated (explain (analyze, wal)
):
explain (analyze, buffers, wal, costs off, summary off)
update test
set val=val
where key = 42
\watch
After multiple modifications to the same value, it still generates one WAL record for the change to the table:
Update on test (actual time=0.042..0.042 rows=0.00 loops=1)
Buffers: shared hit=5
WAL: records=1 bytes=68
-> Index Scan using test_pkey on test (actual time=0.023..0.024 rows=1.00 loops=1)
Index Cond: (key = 42)
Index Searches: 1
Buffers: shared hit=3
PostgreSQL detects that it is the same value, and avoids updating the index entry. However, the table is updated to the same value. There are reasons for that: in an SQL database, DML (Data Manipulation Language) statements like UPDATE denote an intention to update. Even if the value is the same, the user can expect locks to be acquired, triggers to be raised, and the audit log to record it.
I've run the update multiple times to get the optimized scenario. The first update generated four WAL records: it inserted the new version (with the same values) into a new block, updated the previous version, and modified two index entries to reference this new block. Since the new tuple was appended to the table without any concurrent inserts or updates, the second update found free space within the same block. This allowed it to avoid generating additional WAL records for updating the physical location, utilizing a HOT update optimization. However, it did create one WAL record for the Heap Only Tuple and an additional record during the read phase to clean up the old index entry. The next runs find space in the same block (as the previous versions there can be cleaned up) and do not have to clean up old index entries, so they continue with a single WAL record generated.
MongoDB $set to the same value
In SQL, statements declare an intention, which affects storage even when updating to the same value, to record the intention (in triggers, audit, transaction manager). In contrast, MongoDB statements declare a state, representing the new version of a document to synchronize transient application objects with the persistent database. Moreover, it's beneficial to use idempotent calls to a resilient database, allowing updates to the same value, as this practice is not uncommon and facilitates retrying in case of failures.
When MongoDB applies an update to a document, it compares the two versions (DiffApplier), not only to optimize for this case but also to record only the changes to save memory in the cache. During this comparison, it skips updating indexes for fields that didn't change between the two versions, and even skips the update when the two versions are identical.
I'm writing this following a question on MongoDB forum. To answer accurately, I tested in a lab where I can log what is actually updated.
Logging writes in MongoDB
I start a lab that logs the write operations:
-- Start MongoDB with db.setLogLevel(1, "write")
docker run --name mg -d -p 27017:27017 mongo \
--setParameter 'logComponentVerbosity={write:{verbosity:1}}' \
--replSet rs0
mongosh --eval "rs.initiate()"
-- display logs nicely formatted (with jq)
docker logs -f mg | jq -c ' select(.c=="WRITE") | {
keysInserted: .attr.keysInserted,
keysDeleted: .attr.keysDeleted,
nMatched: .attr.nMatched,
nModified: .attr.nModified,
nUpserted: .attr.nUpserted,
planSummary: .attr.planSummary,
keysExamined: .attr.keysExamined,
docsExamined: .attr.docsExamined,
component: .c,
numYields: .attr.numYields,
locks: {
Global: .attr.locks.Global.acquireCount.w,
Database: .attr.locks.Database.acquireCount.w,
Collection: .attr.locks.Collection.acquireCount.w,
}
}' &
If you don't have jq
installed you can simply docker logs -f
, but I wanted an output that fits well in this blog post.
I connect with mongosh
and create a collection with one document, one indexed field and one non-indexed field:
db.test.insertOne({ _id: 42, indexedField: "A", otherField: 101 });
db.test.createIndex({ indexedField: 1 });
I run an update that sets the same value on the indexed field:
db.test.updateOne(
{ _id: 42 },
{ $set: { indexedField: "A" }
})
{"keysInserted":null,"keysDeleted":null,"nMatched":1,"nModified":0,"nUpserted":0,"planSummary":"EXPRESS_IXSCAN { _id: 1 },EXPRESS_UPDATE","keysExamined":1,"docsExamined":1,"component":"WRITE","numYields":0,"locks":{"Global":1,"Database":1,"Collection":1}}
The read part is executed, with an index scan on the key (EXPRESS_IXSCAN) finding one key and one document, but there's no document modified ("nModified":0
). "keysInserted"
and "keysDeleted"
, related to the index, are not even present in the log.
I run another update that sets the non-indexed field to a different value:
db.test.updateOne(
{ _id: 42 },
{ $set: { otherField: 102 }
})
{"keysInserted":0 ,"keysDeleted":0 ,"nMatched":1,"nModified":1,"nUpserted":0,"planSummary":"EXPRESS_IXSCAN { _id: 1 },EXPRESS_UPDATE","keysExamined":1,"docsExamined":1,"component":"WRITE","numYields":0,"locks":{"Global":1,"Database":1,"Collection":1}}
Here, the document was modified ("nModified":1
) but index key modification has been skipped ("keysInserted":0 ,"keysDeleted":0
) as it is not needed to find the document.
The write amplification seen in PostgreSQL when the new version must be written to a new location doesn't happen here because in MongoDB the indexes reference a logical RecordId rather than the physical location like PostgreSQL's CTID.
I update the indexed field to a new value:
db.test.updateOne(
{ _id: 42 },
{ $set: { indexedField: "B" }
})
{"keysInserted":1 ,"keysDeleted":1 ,"nMatched":1,"nModified":1,"nUpserted":0,"planSummary":"EXPRESS_IXSCAN { _id: 1 },EXPRESS_UPDATE","keysExamined":1,"docsExamined":1,"component":"WRITE","numYields":0,"locks":{"Global":1,"Database":1,"Collection":1}}
This must modify the document and the index entry. The index entry for the old value is deleted ("keysDeleted":1
) and the new one inserted ("keysInserted":1
).
Finally, I set back the document to the initial values, changing both fields:
db.test.updateOne(
{ _id: 42 },
{ $set: { indexedField: "A" , otherField: 101 }
})
{"keysInserted":1 ,"keysDeleted":1 ,"nMatched":1,"nModified":1,"nUpserted":0,"planSummary":"EXPRESS_IXSCAN { _id: 1 },EXPRESS_UPDATE","keysExamined":1,"docsExamined":1,"component":"WRITE","numYields":0,"locks":{"Global":1,"Database":1,"Collection":1}}
As at least one field is different, the document is modified ("nModified":1
) and as an indexed field has changed, the index entry is updated ("keysInserted":1 ,"keysDeleted":1
)
No write conflict in MongoDB
To validate that an update in MongoDB does not affect write consistency guarantees when it doesn't change the document, I run an update to the same value within a transaction:
// start a transaction
const session = db.getMongo().startSession();
const TX = session.getDatabase(db.getName());
session.startTransaction();
// in the transaction, update the document to the same value
TX.test.updateOne(
{ _id: 42 },
{ $set: { indexedField: "A" , otherField: 101 }
})
This doesn't modify the document as it is the same values:
{"keysInserted":null,"keysDeleted":null,"nMatched":1,"nModified":0,"nUpserted":0,"planSummary":"EXPRESS_IXSCAN { _id: 1 },EXPRESS_UPDATE","keysExamined":1,"docsExamined":1,"component":"WRITE","numYields":0,"locks":{"Global":1,"Database":1,"Collection":1}}
While the transaction is active, I update to a new value in another session:
// concurrently, update the document to a different value
db.test.updateOne(
{ _id: 42 },
{ $set: { indexedField: "A" , otherField: 102 }
})
This updates the document:
{"keysInserted":0,"keysDeleted":0,"nMatched":1,"nModified":1,"nUpserted":0,"planSummary":"EXPRESS_IXSCAN { _id: 1 },EXPRESS_UPDATE","keysExamined":1,"docsExamined":1,"component":"WRITE","numYields":0,"locks":{"Global":2,"Database":2,"Collection":2}}
That proves that the transaction didn't record any write intention as there is no write conflict. It can commit:
// commit
session.commitTransaction();
If you run the same test but with different values, you will see the transparent retries, thanks to the automatic backoff loop, until the transaction times out (1 minute) and then update will be able to complete - the number of attempts being visible in the number of lightweight locks:
{"keysInserted":null,"keysDeleted":null,"nMatched":null,"nModified":null,"nUpserted":null,"planSummary":null,"keysExamined":null,"docsExamined":null,"component":"WRITE","numYields":null,"locks":{"Global":null,"Database":null,"Collection":null}}
...
{"keysInserted":null,"keysDeleted":null,"nMatched":null,"nModified":null,"nUpserted":null,"planSummary":null,"keysExamined":null,"docsExamined":null,"component":"WRITE","numYields":null,"locks":{"Global":null,"Database":null,"Collection":null}}
{"keysInserted":0,"keysDeleted":0,"nMatched":1,"nModified":1,"nUpserted":0,"planSummary":"EXPRESS_IXSCAN { _id: 1 },EXPRESS_UPDATE","keysExamined":534,"docsExamined":534,"component":"WRITE","numYields":533,"locks":{"Global":535,"Database":535,"Collection":535}}
Conclusion
I compare PostgreSQL and MongoDB as they are the most popular representatives of relational and document databases, respectively. Beyond performance, understanding the behavior is critical.
In PostgreSQL, an UPDATE statement indicates an intention to perform an operation, and the database executes it even if the stored value remains unchanged. This ensures SQL developers' expectations are met: locks are acquired, triggers activate, and changes are logged. While index modification can be skipped, a new version of the row is still recorded to fulfill the command.
In contrast, MongoDB operations specify the desired final document state rather than an explicit action. When updating, MongoDB computes the new document version and, if unchanged, skips rewriting it and avoids unnecessary index writes. This approach aligns well with idempotent, retry-friendly patterns and reduces write amplification when no actual change occurs.
It’s End of Life for Redis Enterprise 7.2 in Six Months – What Are Your Options?
August 27, 2025
PostgreSQL JSONB Size Limits to Prevent TOAST Slicing
In my previous post Embedding Into JSONB Still Feels Like a JOIN for Large Documents, I examined the behavior of large JSONB documents in PostgreSQL when they exceed 2 KB. This limitation can compromise the data locality objectives inherent in the document model. However, it's worth noting that this limit can be increased up to 32 KB.
Details about TOAST thresholds
PostgreSQL stores table rows in fixed-size pages (BLCKSZ), defaulting to 8 KB but configurable up to 32 KB at compile time. If a row value exceeds the TOAST_TUPLE_THRESHOLD, about a quarter of the page size (≈ 2 KB for 8 KB pages), the TOAST mechanism activates. PostgreSQL first attempts to reduce the row size to the TOAST_TUPLE_TARGET (defaulting to the threshold, but tunable per table with ALTER TABLE … SET (toast_tuple_target = …)
) by compressing or relocating large TOASTable columns.
If the value remains too large, it is written to a separate TOAST table in chunks (up to TOAST_MAX_CHUNK_SIZE, also about a quarter of the page size), with each chunk stored as a separate row and retrieved via an index on (chunk_id, chunk_seq).
TOAST_TUPLE_THRESHOLD and TOAST_TUPLE_TARGET can be adjusted at compile time, while TOAST_MAX_CHUNK_SIZE and page size changes require initdb for a new database.
Storage strategies (PLAIN, MAIN, EXTERNAL, EXTENDED) and compression methods (pglz, lz4, etc.) are configurable in SQL. For large JSONB fields, exceeding the threshold incurs the cost of compression and indexed fetching, akin to an implicit join.
To fit the largest document possible in PostgreSQL, we must use the largest block size available, which is 32KB. This requires compiling PostgreSQL and creating a new database. While this is not feasible in a managed service environment, we can perform these actions in a lab setting.
32KB BLKSZ PostgreSQL lab
I used the official Dockerfile and added --with-blocksize=32
to the configure command:
diff --git a/18/alpine3.22/Dockerfile b/18/alpine3.22/Dockerfile
index 0a8c650..8ed3d26 100644
--- a/18/alpine3.22/Dockerfile
+++ b/18/alpine3.22/Dockerfile
@@ -148,6 +148,7 @@ RUN set -eux; \
--with-llvm \
--with-lz4 \
--with-zstd \
+ --with-blocksize=32 \
; \
make -j "$(nproc)" world-bin; \
make install-world-bin; \
I built the image and started a container:
sudo docker build -t pg18-blksz32 .
sudo docker rm -f pg18-blksz32
sudo docker exec -it -e PGUSER=postgres $(
sudo docker run -d --name pg18-blksz32 -e POSTGRES_PASSWORD=x pg18-blksz32
sleep 5
) psql
increase toast_tuple_target
I created the same table as in the previous post with only one difference: I set the TOAST target to the maximum, the block size minus the tuple header (24 bytes), and TOAST header (8 bytes), at the column level:
ALTER TABLE orders SET (toast_tuple_target = 32736);
Another solution could have been disabling external storage at the table level, unless it doesn't fit in the block.
ALTER TABLE orders ALTER COLUMN items SET STORAGE MAIN;
Explain (analyze, buffers, serialize)
After setting the document with the UPDATE statement of the previous post, I checked the number of pages read to get one document:
postgres=# explain (analyze, buffers, serialize text, verbose, costs off)
select *
from orders
where ord_id = 42
;
QUERY PLAN
-------------------------------------------------------------------------------------
Bitmap Heap Scan on public.orders (actual time=0.047..0.048 rows=1.00 loops=1)
Output: ord_id, ord_dat, items
Recheck Cond: (orders.ord_id = 42)
Heap Blocks: exact=2
Buffers: shared hit=4
-> Bitmap Index Scan on orders_pkey (actual time=0.034..0.035 rows=2.00 loops=1)
Index Cond: (orders.ord_id = 42)
Index Searches: 1
Buffers: shared hit=2
Planning Time: 0.067 ms
Serialization: time=0.036 ms output=20kB format=text
Execution Time: 0.169 ms
As before, scanning the index requires 3 pages and 1 page for the heap table. Because the document fits entirely within this 32 KB page, no additional buffers are needed during the Serialization
phase, unlike the six buffer hits required in the database with an 8 KB block size.
Larger documents
If the document size increases above the block size, it will be TOASTed:
postgres=# update orders
set items = items || items
where ord_id=42
;
UPDATE 1
postgres=# SELECT o.ord_id, o.ord_dat, t.chunk_id, t.chunk_seq, t.ctid,
pg_size_pretty(length(t.chunk_data)::bigint) AS chunk_size
FROM orders o
JOIN pg_toast.pg_toast_16384 t
ON t.chunk_id = pg_column_toast_chunk_id(o.items)
WHERE o.ord_id = 42
ORDER BY t.chunk_seq
;
ord_id | ord_dat | chunk_id | chunk_seq | ctid | chunk_size
--------+-------------------------------+----------+-----------+-------+------------
42 | 2025-08-27 17:21:30.677401+00 | 116406 | 0 | (0,1) | 8140 bytes
42 | 2025-08-27 17:21:30.677401+00 | 116406 | 1 | (0,2) | 8140 bytes
42 | 2025-08-27 17:21:30.677401+00 | 116406 | 2 | (0,3) | 8140 bytes
42 | 2025-08-27 17:21:30.677401+00 | 116406 | 3 | (0,4) | 8140 bytes
42 | 2025-08-27 17:21:30.677401+00 | 116406 | 4 | (1,1) | 7524 bytes
(5 rows)
When stored inline, the document was 20K (output=20kB
) and was stored as a single datum. Now that it has doubled to 40 KB, it is stored into five chunks because the maximum TOAST chunk size is 1/4th of the block size. That doesn't matter because they are stored on the same page, or contiguous pages, as indicated by the CTID. We have doubled the size, so it makes sense to read two heap blocks instead of one. However, those are in addition to the tuple, and the main problem is the overhead of the TOAST index traversal to find those pages. There are 6 pages read in total:
postgres=# explain (analyze, buffers, serialize text, verbose, costs off)
select *
from orders
where ord_id = 42
;
QUERY PLAN
-------------------------------------------------------------------------------------
Bitmap Heap Scan on public.orders (actual time=0.028..0.028 rows=1.00 loops=1)
Output: ord_id, ord_dat, items
Recheck Cond: (orders.ord_id = 42)
Heap Blocks: exact=1
Buffers: shared hit=3
-> Bitmap Index Scan on orders_pkey (actual time=0.016..0.016 rows=1.00 loops=1)
Index Cond: (orders.ord_id = 42)
Index Searches: 1
Buffers: shared hit=2
Planning Time: 0.109 ms
Serialization: time=0.143 ms output=40kB format=text
Buffers: shared hit=3
Execution Time: 0.238 ms
Compared to the previous example on a 8 KB block size database, there are less pages read in total because the indexes benefit from the large block size and necessitate less branch levels:
postgres=# create extension if not exists pageinspect;
CREATE EXTENSION
postgres=# select btpo_level from bt_page_stats('public.orders_pkey', (
select root from bt_metap('public.orders_pkey'))
);
btpo_level
------------
1
(1 row)
postgres=# select btpo_level from bt_page_stats('pg_toast.pg_toast_16384_index', (
select root from bt_metap('pg_toast.pg_toast_16384_index'))
);
btpo_level
------------
1
(1 row)
The main advantage of a document database is to offer a data model that natively matches application objects, without the complexity of object–relational mapping (ORM), and to preserve that logical model down to the physical layout. This reduces random I/O, improves cache efficiency, enables transparent sharding, and increases transactional scalability.
Conclusion
In MongoDB, documents are stored in a single block, with size ranging from 32 KB to 16 MB (the maximum BSON size), which ensures strong data locality. Each document typically corresponds to a domain-driven design (DDD) aggregate and can embed large fields, including text, arrays, vectors, extended references, and one-to-many relationships. Common document sizes ranging from 32 KB to 256 KB align with WiredTiger’s minimum I/O size, cloud storage maximum I/O size, and modern CPU cache sizes.
JSONB in PostgreSQL allows some locality for small documents. However, when a document exceeds about 2 KB, it moves to TOAST storage, breaking locality and adding overhead due to an extra index traversal. Increasing the page size to 32 KB allows larger documents to remain in-line, but this still falls short of the sizes typical in document databases. Moreover, achieving these sizes often requires non‑default builds and self-managed deployments, which are usually unavailable in managed services.
PostgreSQL’s TOAST mechanism allows for the storage of very large JSONB values, but it comes with a performance trade-off, impacting locality and access speed in favor of accommodating oversized data in a fixed block size storage engine. In contrast, MongoDB is designed to maintain whole-document locality up to a significantly larger size limit, and preserves the logical model of an application in its physical storage. While both databases can store JSON, they fulfill different purposes: MongoDB is optimized for an application-centric document model preserved down to the storage layer, whereas PostgreSQL is tailored for a database-centric normalized model, enhancing it with JSONB either for small additional attributes or for storing large documents that are accessed infrequently.
August 26, 2025
Astound Supports IPv6 Only in Washington
In the hopes that it saves someone else two hours later: the ISP Astound only supports IPv6 in Washington State. You might find this page which says “Astound supports IPv6 in most locations”. Their tech support agents might tell you that they support v6 on your connection, even if you are not in Washington. “Yes, we do support both DHCPv6 and SLAAC”, they might say, and tell you to use a prefix delegation size of 60. If you are staring at tcpdump
and wondering why you’re not seeing anything coming back from your router’s plaintive requests for address information, it is because they do not, in fact, support v6 anywhere but Washington.
Valkey 9.0: Enterprise-Ready, Open Source, and Coming September 15, 2025
Tinybird vs ClickHouse Cloud: Complete Cost Comparison Guide (2025)
MySQL 5.6 thru 9.4: small server, Insert Benchmark
This has results for the Insert Benchmark on a small server with InnoDB from MySQL 5.6 through 9.4. The workload here uses low concurrency (1 client), a small server and a cached database. I run it this way to look for CPU regressions before moving on to IO-bound workloads with high concurrency.
tl;dr
- good news - there are no large regressions after MySQL 8.0
- bad news - there are large regressions from MySQL 5.6 to 5.7 to 8.0
- load in 8.0, 8.4 and 9.4 gets about 60% of the throughput vs 5.6
- queries in 8.0, 8.4 and 9.4 get between 60% and 70% of the throughput vs 5.6
Builds, configuration and hardware
- l.i0
- insert 30 million rows per table in PK order. The table has a PK index but no secondary indexes. There is one connection per client.
- l.x
- create 3 secondary indexes per table. There is one connection per client.
- l.i1
- use 2 connections/client. One inserts 40 million rows per table and the other does deletes at the same rate as the inserts. Each transaction modifies 50 rows (big transactions). This step is run for a fixed number of inserts, so the run time varies depending on the insert rate.
- l.i2
- like l.i1 but each transaction modifies 5 rows (small transactions) and 10 million rows are inserted and deleted per table.
- Wait for N seconds after the step finishes to reduce variance during the read-write benchmark steps that follow. The value of N is a function of the table size.
- qr100
- use 3 connections/client. One does range queries and performance is reported for this. The second does does 100 inserts/s and the third does 100 deletes/s. The second and third are less busy than the first. The range queries use covering secondary indexes. This step is run for 1800 seconds. If the target insert rate is not sustained then that is considered to be an SLA failure. If the target insert rate is sustained then the step does the same number of inserts for all systems tested.
- qp100
- like qr100 except uses point queries on the PK index
- qr500
- like qr100 but the insert and delete rates are increased from 100/s to 500/s
- qp500
- like qp100 but the insert and delete rates are increased from 100/s to 500/s
- qr1000
- like qr100 but the insert and delete rates are increased from 100/s to 1000/s
- qp1000
- like qp100 but the insert and delete rates are increased from 100/s to 1000/s
When rQPS is > 1.0 then performance improved over time. When it is < 1.0 then there are regressions. When it is 0.90 then I claim there is a 10% regression. The Q in relative QPS measures:
- insert/s for l.i0, l.i1, l.i2
- indexed rows/s for l.x
- range queries/s for qr100, qr500, qr1000
- point queries/s for qp100, qp500, qp1000
- l.i0 - initial load in PK order
- l.x - create 3 secondary indexes per table
- l.i1, l.i2 - random inserts and random deletes
- qr100, qr500, qr1000 - short range queries with background writes
- qp100, qp500, qp1000 - point queries with background writes
dbms | l.i0 | l.x | l.i1 | l.i2 | qr100 | qp100 | qr500 | qp500 | qr1000 | qp1000 |
---|---|---|---|---|---|---|---|---|---|---|
5.6.51 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |
5.7.44 | 0.89 | 1.52 | 1.14 | 1.08 | 0.83 | 0.84 | 0.83 | 0.84 | 0.84 | 0.84 |
8.0.43 | 0.60 | 2.50 | 1.04 | 0.86 | 0.69 | 0.62 | 0.69 | 0.63 | 0.70 | 0.62 |
8.4.6 | 0.60 | 2.53 | 1.03 | 0.86 | 0.68 | 0.61 | 0.67 | 0.61 | 0.68 | 0.61 |
9.4.0 | 0.60 | 2.53 | 1.03 | 0.87 | 0.70 | 0.63 | 0.70 | 0.63 | 0.70 | 0.62 |
- l.i0
- there are large regressions starting in 8.0 and modern MySQL only gets ~60% of the throughput relative to 5.6 because modern MySQL has more CPU overhead
- l.x
- I ignore this but there have been improvements
- l.i1, l.i2
- there was a large improvement in 5.7 but new CPU overhead since 8.0 reduces that
- qr100, qr500, qr1000
- there are large regressions from 5.6 to 5.7 and then again from 5.7 to 8.0
- throughput in modern MySQL is ~60% to 70% of what it was in 5.6
August 25, 2025
Don’t Trust, Verify: How MyDumper’s Checksums Validates Data Consistency
August 24, 2025
SQLite (with WAL) doesn't do `fsync` on each commit under default settings
How to install ClickHouse on your own servers with Tinybird self-managed regions
Embedding into JSONB still feels like a JOIN for large documents
Think PostgreSQL with JSONB can replace a document database? It’s a tempting idea: embed your related data directly inside a single JSONB column, and you should be able to avoid additional table lookup for data that is always queried together, just like in MongoDB, right? Be careful.
Unless your documents are small enough to fit comfortably within a fraction of a PostgreSQL page (8KB), what you embed logically into JSONB won’t physically be stored together in PostgreSQL. The result?
When you read that embedded data, PostgreSQL still performs an index lookup per document— just like a nested loop join in the relational model you were trying to avoid.
Using JSONB in PostgreSQL has its benefits, but it doesn't operate like a document database. SQL databases provide data independence (Codd rule #8), enabling developers to query a logical model without worrying about physical storage (until they need to read an execution plan). This data independence also applies to JSONB. Conversely, NoSQL databases give developers more control over physical data layout. In MongoDB, storing a JSON document as BSON enforces data locality by embedding related data, to improve query performance, sharding and transactions. In PostgreSQL, however, the same JSON may be distributed across multiple table rows, only hiding the underlying index traversal and joins.
Let's explore a straightforward example of a one-to-many relationship within a JSONB column. We will also examine the execution plan to uncover what occurs behind the scenes.
The normalized relational model
Here is a typical relational model for storing a one-to-many relationship, orders and their items, in two tables to adhere to the first normal form (3NF):
create table orders (
primary key(ord_id)
, ord_id bigint
, ord_dat timestamptz
);
create table order_items (
primary key(ord_id, ord_seq)
, ord_id bigint references orders (ord_id) on delete cascade
deferrable initially deferred
, ord_seq int
, item text
);
I loaded one hundred thousand orders, each containing ten items. Each item is two thousand characters long, to reach PostgreSQL's TOAST_TUPLE_THRESHOLD (typically set to one-fourth of the block size), and get them compressed. Documents within a document database are typically designed to align with a domain-driven aggregate, encompassing all objects involved in a business transaction. This ensures that the size of the documents meets or exceeds the necessary specifications. For the order entry use-case, this includes large text like the product name and description at the time of ordering. I generate random items with a COPY command from /dev/urandom:
-- must run in a transaction to avoid showing orphans
begin transaction;
-- load random order items
copy order_items from program $$
base64 -w 2000 /dev/urandom | awk '
NR>1000000 {exit} # 1000000 rows
{ print int(1+NR/10) "," NR%10 "," $0 }' # 1000000/10 orders, 10 items
$$ with ( format csv)
;
-- load corresponding orders
insert into orders
select ord_id , clock_timestamp()
from order_items group by ord_id
;
-- end transaction
commit work;
-- finish the work with some cleanup and statistics gathering
vacuum analyze orders, order_items;
This dataset illustrates a typical one-to-many relationship in a normalized SQL database.
JOIN on normalized tables
To fetch an order and its items, the application must join the two tables:
postgres=#
select ord_id, ord_seq, item
from orders
left outer join order_items using(ord_id)
where ord_id=42
order by ord_id, ord_seq
;
item
--------+---------+----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
42 | 0 | 5+t1AMDYze2fBYi3M/Ag3clRdZHsQ3YfSL64kOwcsaJLJICuSVL0pi4laZ/T01dkOeGtVDiklwBinLa3Hh6Oz4gcQkwasTS7Ir2FPGVqC6cgMolM16CHLDEDCZ3V19vPQT8ajtBHnm5j5xMvJaPz+Gz3h2Iq1z5QQA5C0dghj833EDw1ECitKvTrseMJzsPUq+O2UKMrJLkFdqJjAOArzaYvx7weT6lp6lpwwGURI4j3kHvMgVwsN+q+RoFwW3/7rBy+io45ia1FCW++hc/8yZv83koYao5vfFfIfnhC1htlXqz5tFIOlZHQ7aUfVkb1qBl7gkwNIq/1o3JNX+LAx+kiE7geiX9HJrGJXzHtVjz1fC9SJocoRFf43IY4VlPIl0xn/KugDl6hVUexQ+poybzaQRRzjaI2uPMpWgu9nlXzdKgm+RXmuRcBuVQYIJJP5/jw96Ow1QrgvxLEeOheYNITDgAEQYHKXSOxgWTFeP3+LyeAKnmDlihEkiKXBUt8GEhfVlz6IkEehu3ND0VM8DfG/TBAy9S3r79RoSTAkboMYAAsqw9JtqsqsQJgpwmhJ6TQDhp9gAI0CsFXwBWwFtsw8qQiVe9VtRbsW2xp623QSfw++5q8OVVU+sWZRM4sH2tmtKSyQBWKCpyyVNFufGNzHugbQ6KETjdr2FKd1GD7HfaVsScBgo6/gGsw27EH7XySQANSGrk1JpYVFVAb9CcXittiFnD4EE/N5r7PWGM6HBsOkatPa1+4gyzjpxoyx9y1EAJo98KnezjPbg31AZo+kt1aAGBX0np2MTdpD3Ci8EStgJLXUMRCtoblyejv8Nw0r7OgUJRiw3ZjADhJTNpjjfvXrawKM8RTJUMNpZzF/ebD0xNr0W1NZD17kH98ibojId3hO9AQ7EOy4lEJYZCIpulqb7XHOohWmkGC7X1GBzNXQVKcCBSU0Ew1p8EjYjpIkErw6GESqILlPK4Ko6eK1rn+jJ+xEvnxYshcCUNki5S1YX4mf6Jh06miVjZqSSgwaQ2KYrroHdQIjdhygkH2aV3RpYo9BXE00KiL6VJzTvwzVyxQ/5rCTPZT04BWLAg7bOZu6itbUPvR3jMury2iTII9IwGRqEpgS4BVYxOGqTEZNpwwiideIvAHZaX4HgcDhg2X3uDjBcyjLXiUckzlgeWhU18uXE87MjWgiYipvkI2c0lTQG3pHgPwntjAMYzCMeet05UWCPz2JxAVHUKT67mbf3V+bhehyM4pVWkIxBAQyStCSY8WAj4OtlnWAKVcXDOxpy55dg1JBGQcuQsqVOXw9uLrFAuShKTmPOXcZT7SupbsVGrarvkpcqRKdeP3Rcmarlp2g6B5O7kHQhjRExTqCGKyFIWGi+A234YtusS7ZZMaAiJGEb9Oc8Qxs/F1ELZ2eHeHNk1Tw5cNBxkTMwy3k2Z1HIwB2iJyiAIT1FYJoq22zsKtH0jbzMgcnqjUeCTvcLsmt8Z9qWP/om7MjPqLaj+7zfISvE6kCgOy1OUnWlawKPk59Z9F9JMeLcTIb4+ePc4fmrgFqOCWd1iPCtN26nLwpZ8jmEAQswwVwFLrSCZ2ePN4ooIUyKrkFSuhgvhADGlKspx3tE4qFPfg7qE7Scv6RSCDLo22VbpNewtRP8FOVo1sFYqI0wqRh8cIcNR3K0n3qsSrw+LX8fOQHcPkQLdw8gjNs5XSBxw/ZoqwSeGcfDZkOftXW+St1Q81PzP9dmgvqk9IPWxjicTGGPDWVWinZrASOdkPKqFgdJdTcNWPwSpqXGMcQ44dp+FYj66aCBmImdUbkiz0axMKEoMM6NmusoIkovC7Z/tEA0ODYXqqO9RIVmDLfRDwWCtSkkiwk3WMWx/RQU1cKZwZCnLcBjF7hyWFVQ1/rG7Aa5vjz+MScjzGii3SY4GCWqsc2lOeCFRMf1ttOL6hRuaLJgvAR580Ri0DrExyyuq83bZWap4gSwdrMMh7/IukZAqpoX8HbJDQz+Db
42 | 1 | uj5i6zVF8oE5zUW1VKg1SiTXfB0avNituKrUseSycZmceBl8OsLDtsC02BtHGZxTio/JtM0I8Ur05ajt4g7cds3AqiGkU+TzpTXeCnRZIIk8qPxeUwI+eSmAsHxZoIap0PB+Uwkisq1omximnR1D9zLt8ZDsadP0SC5JFv9AQMzF/sic2YtbmifIyCQNbEBKMQTfGWOe156x6lSPN6L7muxybYjVh+gZ1gucxcbYXVXt1BP02BAhTzxHjCnEHTxyOsti7ENWbBfv18Vni//hjyYYmt4z0WLdurh6T0mQqAHpwf2W51rpBsF5sKwA9gOus0BwPyzILsQk4upscXzoVwgdlXhxDw9oc2qSx5/ks7R2uNXurD6kyfjRV7LCtSsNbmfKRV6hno+fJuyGvhX0RM+1/+b5qCTTS+jSq+xCXV2dFcYaH2rQBbl0H8/Sr27tWHW4JV7N/P4WpMGBBIw1EJCb5uOF/wgINzCXvlt9JL/XLqX0dohlSlFoVVz0fq1O1LXuwTeGM9/hiqA/NkGURVcSzulvp3AftacrxoX9AJeZC9htcG/veR3QKvFsNRICqUdmgcHgpcS26QhZ1dxkR5p7GnC6+jxVXi6YRuFiwPdlkOhJRBrMxStsYMaBxZKWjd5AZ033eaecNipehTwv2U/GzFXAlIJbuvB4fHHcJFiPJP5c9YS8wqj/LKZ5BECZhsP6e7z3Xya1RFZeRHwz5I7MI0ceJAIMJKuXVI3DHS0euko9lbao8tX1Kp7nAUxAzmL9O9cxO2oyjy+Y5Lg/iA8Ndax6joBixbPuijYnD9msCdFbIjw+DURj5UAXiQVDqA9vut5VM6729EecHcAo4NjG9GoQQc9+Jo8Ni87vEtUcKbr3RuDXxtXIgoxmA3z8HVoNWx/ePk3i46pNb3skzMIto44R9VzBlwb9WOYDVeB9G/R4bFviHcxEJhI1KNphFUv6qRFRTmxs2ZUGqqP9iwAQA4/8BMK9MmzHZEKMduQsggasgCIEVSMyVa+iNGRYffc60LLbA9w7ZJo5otTzP+h3xUamB00KXKUyccdW47JEQofmyXarT5/gpN+iqBbS+CgWiz08rZ6BVReqf1qxfMLb0jDjQHxku783YriggE1Yg992peRz06wHP3ZMJMBJaXFg2iLRCppm4VxI4dlQ22DrNGJKkfoaLStNmYDp8/EX6Ep08sYmxyZ1E8tpgN0/1wZigrK1Xl4YPCyVA8aDHj96Tjsq7RMWVS39MtsW8q0jzF+R5OaNEQ2nngkMI0gwSAMod+/HPQAr3vHTM39QC8K8ML6sPK1TlDGgYlXswX4Soxqq9/pqEsnX/ehifH/8ZA9mp4Hz63pT8VRZiiwBStjtHh06Ipx1HXK1lnieL2KjaOgGCqozfn8JV4pWFyfFWvp3QfWag8VKvlvrvg8M/DsdkvEq4H7vnx4zrF9LZneZydmomFWXbfVY0lBDzFSACB6p3LncYvFRWOVodpE9VQ3c8etoKcPdlYRvUstcE/T37QSy4Bdln/lJuq5pxMh8NvT4MA8W6zaOjM549tDbp6NLBVbVqFCqfSC+njJL658R1+vyJ2LHByfcOtDk0nKZuYrpsSGHL9qH2nADLLJ9zXM5N8oLrJH+J+/PapkI4sv+JCTZfpfBom1JKf1Uj7KDBfnYqUzYf6wW9JXr4gKNPzSMWY5CrKxvFzZObbW2uDYKBIgfhv9/9Ofbz1Ti2gcWi8jJxkI0leBC8b0Jhefo8F0ui7YdMPQbJOElDJYN0x12qSadSe4NWzPEZtTne4GyydMvSzGC2IQkbiHkCLDGslRWS2Lwjs8XOKTpzk7RshchccwWZM9FSYpwmBRIa2LGwIegHGV8+0/Ii8SdzENyXlzeCzW80wn2O1RdRCtucmIKS6/awBnX+5btVDkJqMOVucGZlgx08JPkh+OT999QbZosxvD4RKO3x0JyHX5pqyNMR+Xk0swDDtLDuIhNvOgWo+1ERQQu5ClOd4hE
42 | 2 | Ut06CkC6oRwX6lpHXeyE2vAA/k19ZnPG+Jwbw7nwRA/MrvvkXpqic42L27jTc3cKgryQSM3SyEiejaWYyAch5FpFsakTCKMBUSnWvKmsvo4JqROZvzXfePw9nhNhSqR+Djg46OMaUTaLzC8UeRxSGyjutR1I8Q8mxEE57av/KS885t1FtnYGsmbSbPyvd8Fq3SbVelmkIvno7QuW3j5te3GPINcoboclhGYUG1dvV5KlqyAWMWi//3N5odZXjPLnU0mPqjy2eYOAwbfvozZqQ5yL3B09xJnIV/ymeD4YsoBPsFw63m68YefjvH8nvzSOABsxBu6s6/SdtQIiBYOEZJm0tya5LFxxKuOBLDjjjpiRYcfXtdsiag0G3e+Eag8JNY6GydD38KtAIl/hDACjxJgTcfKN66gHFqpeICtOraNfrjCnxx5lAcxOlP973r4I6I1myYYsvSGmnCzWyNPQTdYHxDxqtesP7XZMeXcLFP4cN9ueNDdzQ/cjh0AjAq9G25qd28lKGzmdQhVZItES0liofHglPEtLuGqIrscq2LMpcebg1TwkUXVixTninQvZkOu+F9txTaC3GAZug0Z8A4U2IKaSmShg1bYU/HCyEVOImndD7Xrj4lpyquWJdd/IK3MsNTOmFiO0ZGNerQ69C0Xy6/O8+kKFPB9m1JD2N4nKL0Q//8s9Lx3FDe8ClLflavgkHouqldgstKN2hXdZWw1vSrzkhI/uPa7KLv9J5ZWJQIia4QU4ry4HP59vs3BPr6qsRZcndzQyKmlEbS6eerhbC30N0C4GEdJzuTTpY4wn1erSW1V6tzgEgiDeYNrL2/msNAWpbYXMhIW5bUL1SpBTnN2Snf5grLCZy5DexiqCUrkwXjetDlE+12IKMd8a6p3ClUBAhKNRKd8iklpQdLe3two6ZCS5lpVcMF80Nt7teRUEt8c10z+H2SnOfwbyy315piLGc2g/mVhvADaT/5qTsCG7wohcCIjKxo5a5TOYXAuYGkKW7ejUWpY3ZuC3OpMKWQVa67iiJw8wbyUm5lW1hDqC1qIJ9kFxclCHR4DVhwd1HzP5sa7qy6h5lVKVX94h8hVzVOlRbba4+MShZ8MWyOHNtFR54WrEfAipbr//RkzdRcDiJlPuZGOPWlwO5LvI/IANopyX6XhbPeWL2Ji4kYnxzEArFzy4US+9VzapMczkS3158KNWVNI15BEJEybb46fzlgF1DvWafuuhsOO3wyEGR6FVMwof+20g55cyOc9sUhnQj//387KGWjoHL15ka+xy7lDB+EAXgYV4ecGWZyjwGozMRWxOhMm+Ksne/TRuifbUmrCyCikC2/r+UBsCH1wnr66d4oDZeahBGlVew8Z3mHzpYTurwgmDC2hFWyNWQEswMM/k9jJZ2i5DvQ40JnNVa+0rVghXXlpE/nIUN4jCOEBWqURppkc2Ze+zC4/tUHZANarfm32q5n55gFesBljTJhOKHWOAU2Ur9lzqev8zKwYZhXVCaQTO4zTJl/cRtGrvJkEzqQcxbn6BoBVDBA2c8h8yc1/mgo4Pb1KvJ7bDyU+a2w0vsuEsG8MXZrPNPvsJ7IHBad6ywIZepvKIlPbjNXflDkNxteXa2hHJqtjGwB0VI8hYtuen8kp6iiLBmft/HbcIKH3CkcGlKc7gZET+t96VbfQe1VP97AxAufaZMr/sabVf/9g1hVOfUHPbBI+aRGvz80EIvWo7Ipg+mWOwFsUx4i9dLW+SE0f1ZMPDSAhvshrBN7FNm+WtbZYACAPjBkJTVAKgR8IBzFO5eVdlMOpH2B6tTSbqhIBlmUXo/fIiUZmD5ftcJRVBcgmqpA1TyyHBx/DoATjFUbrYWeppHtpzBrZSm9Ug/ERd6Abd2HpSrIuOQ7k9L71ipNhBMuOp4k5HwTYoct8+oo9w/p0TBYU4wLTdpWG+YtetJVWwuwkQ660hvs/4zN4sMfyF0DMr7nYLKGnCNdrJ1IWdzHj2mIZsrn6X
42 | 3 | J5H/qcr/LIYU/P1bF6kOZMne3GpmogWM4Nohs7SQsjxUwfm7tyWHv5xsLZfOn6JfH+s05BB1mtudavjyqAWQeK9vLdmHZp9GNkBBSZVie9RltywlrYG+XzIhltIreun0FQnkBzpug+dAhDWBASzusYufeH4JnqZJZeqQ0E0yllTimL94Z3k0auA6nCHEoOeZ/DmOskcQofSSlX6kZoCFXpo+Lzg1iGP2NN6y6KlHJ05XtzJlOFv8CfeniKkSpXoHTiOaDo2KChJ9jJ0UPiNGFtiSOuJuWNmGIApkWkYx4pJbcs+UCHYwmcVmXa3P92nidmNbrmmc8w7z0uVh8gfNL6rTeXk+MhN5rtWbcJOsuU73Zf5ge3+k4e2wqlda12/k2ZNR0g95tyyQIJU+RBldeh6MLS4USCfONhSJrncTZW3Yx8erPR8GbXIXr3cyQUL7ni613Zs3Nv4a1lcCnBZGGRvEi4BEpjjIOTMCRVb7yTfrMTG8Vch0qh/i1i99c5cr1kA79KhUh0gnItwAjAsNbudTSnvhaPq30WaD/1fMFNrpvY2UgLDFuf6H+Lf6+P2Wge6Cwy7LK2+wyqhKd3Z9WceNx2a+KG1pwGIirHdBh5/RxpnD6UYHo+FDxn8UNvwWFYy0pqShRM2sORn+IUW+MYM1+Z2sKQwGwV0S0O+39VQcRZhm176/x+fhh0vgb8JlvkWS1XhoEaAd9x5TsElpVA+L90iOuOvtRo/exPGQ0qFHe5Q5cDxm456xrg+Xprt1zJoVZ8jn6IX/Qvldsg1mC3nK/sI0f3jetuggN0aheUWQERQj8x0zQyylT9FwtH9bVPeK+PltQMYgaao0Yn9HNCBrwBxIpXuu0yEfuBjrZrOuTr5JLFS05Yyabe34R5tht7tGLsQV0pm9BoXBS/7MHSYDbRMBNT8sAuEYK/ePEZvsHXRCXKxLsx+M052wtXu3ixykLYoc3SuoEtg4x+frU8egWM0pKQCbbJf1IYtrWqwmzxwC4q5fdDMt6CcXaMv1puHDIze4KllbQpxTcRVzBY4152mhRIHjUCmGLwWbLTRHqHv85IC/YtLNzW7dE0/vrdERRnmCebtxF77KbfMDzrDaL+CHhez90aI6y0fBS0j/9pm5Y4n0b7F+75dugM+aSFb4QNOnmXjFVcKxcu9+9wr7GX26UHPX4qvu2L599h6AQyr/QUy+Q0VpL+W13WzcP0GmQZgDjBPQL1RhXVcsk03AH0TX9zzdKgT06tOR9nITi+v0IPffh3QuDX9sNkQaQKX9bBgvAmGr8EObAMDUf/6705TnTfkOZ0U702cDLcFJM3wI7qIcGBEyaA0K6oJYULdbXXPKb6a1CaRq8rQiYKbxq1o9sldrAt8mglEdRMXl/onqB/rm17kGrH2NLsApyN3nSUU446JQEq6zMNd+eR9jPJAp95EYSLILv04wZgGc5NNc8M5PkeMGe5CVZ73k3t3fWyxxHV8cmdoN/LI0PY43yo5NeKnpY63Ms2gWXcAHMrNEsYaSO3QdxHbcaSm+9jL2CSPjNsn6LwTE4UJ1ujttCEmbTkJnj1LE0uSJt0WL8bhCWjbNRYiOIcvJ9bfrjTvGTd8b2DoV/Q2tqQhlcuVdd6sHeKKP169dl+c2C2KUG5y3W61yStJfjaM7IppXzX9lmn46lu37GgWxVLnUhpZSB4r4jvmR/sGYTidDp4L6GP0nEvpuQrzUCUdFYEPI/Oi//MrHUoVB9enS51hLQ3z4NUyegx27KoIDju3/Dwe6ZKolKjCVjyilvBp+l3fC7Iqv/XvccXQf36BQxNIQ2lfyjgS94YNTR3u97GOxAdC6zTWXiavXc4lgAKnyTpnY7KHB0AP+Yo/PsmOX2uhEKOLjITOYUgq4YVIOstJhjLjklzkCh0kL90anVDPD0FB84iQmDZg1nVYahshFo5g6rQlrWcoGdlMZn+87z0NZD3HBsuRV6larHL3xUrAV8R/z0JIGT/+6NYk8BAZp
42 | 4 | cbOntQ3xnJd6r7rPntT7/v8Z1dSMK9dcT2vDemrRFOgWZ6sohFKlDR4GtyNYa2EYfciPBLkU1SKFwE8rOH/DfvQVI5Fk8To3OSF+Lm6zyOTuN46q6/NFqJeaUbefN0C2dSMjmEfp1kwFxsD9bshVx57tvuxyLM88ACXK5DobG0RZka6Li7hl2jzRzfQVF8U+cQAXzvkO5Z16Egra3RqwRfvtq1hSlHDoceGaubXZyniszfUtCvvRTkJIjUgRkRPZ4ZXSEUWGl+sk7cT6Z+/bF3OyrpUwNMTcoPY+4iWSZg/zWKjJRvswE+Xnep+lE5CMDKlbb38a8A9+nnWjuo7N/JgfN490023OLXsHGa+5d3JZbx2b2Z/wd1t+IjOhdHI2RW+wypTqukZU3BKrrZKwVqKp/nfgf55iDSKWV1whyibv+zclOw3hmgR+lWpqLLoZF53goBjH1/qXXiWeTsxEliUsmraGcxNxvwTADvboAx+1gDJhJtJePUCXeGqTg6SRsGcz+E/7+l69lIH6nsi8YR4DFyUxj0T5NNNEoG9uRK0597OjGF1vtirERleS3znZEbHq+hx76UvtWgaf8udJd+sjsHQ5d4XtaDtZUi7Mt4N04lCaMBu7i4EZodjLnpNO6f3icmBmeddXmVNMtw9fC2wEjvPnIi2eSqFGy/iAXHsMjVFyY+vIjHsvLU3uQSyKPMPYIGoI7nI49bosctmcUsd6CVhZLLwEeLA7Gjba//sdCjZ8Niup8hgQR+JL6w5dCTUXx8YeFGVf9Z1cGJ+xAO3ywX8EFqJo5f0lE+cAJ0h9oMzNb+5DQvwxhTFr5ig8bYvKQ0UCPFEGt0v/P2s45/STjI5txdtCrEh6+0Y+1FmkHd7FiAPzf26es1A11ZQWU6URVBXhULjDGxdeM94Te5rTZve3rr0b3EV8L7qS8EW8ixtmA7PhupL3pwTGocHyVQZ2wJvIl919ESp1j+BcdHC1eYAmMcsOW1n1OIitPNjYuM6tU3twN1WA6YUfPPdRhdcuccaFAc/g68zfrdDpJfYAyGz2NEK2D6dCGSjxQmWXuVtW9ptiNHGync4TaRjA+BDFjZWg3cqn+AkML1eKfqyxcFp74zeZpSgkahAhKraSL6rLZpPffOB998WG+W/uRbb3rKjepXBUNiTYjLtIXmHCheisGATYYpfLxwT2H1mso3Taw67W2qZYaM0/ucFOAZoFkoK5Kib9f0P9JQ38ojsascPWRM9x2efCjUwzUm0yX/tEpTXkW01+n75HNheX3JRXFlyjG5iyjBliFGEHK/wHu1g5E2gxESlfSp+RWWcrciNFUaT7lfa6hOfWlkOUBMNhrx01tHtMHHQYzWSDNu8SAgEHMHn/LbrUh0mKg8oRg6/lU6es1BKFGbT6HUyQARDod9IO3kXqDlSLXcxWgrnoGRasL7uayV6iLaiu5NA8AW/v6vVLBR7rIVA1a/z/1tArCLw31+/418AsQG9fea624n5U5l5MTVR1zT7PbzduSSRpro5UKW1UntRPde8vF2cGjJ/VuThXrwwnme3r1YJdSTIFdZv9uNWHmJTuKs4LYM1C6jirzO+UxRiAW7Lvt7Yk9+v0b+W3QDbhYkpzmi4yrzGzsTlA2Mdpvl9lwcl/za83vBXWYClT7tNkN8t4EdA4ikAFzD5113QdwdQbm+it/A4brtGev4mQeala+F8IQ9jprsNZ1lbjvJL9jAVfX4zJUsj8I666XCnzhf9xD0dbRWslLGgbHnlOj3JEov/UgeWR3XXdFfi6JIjcHLUj4xI6CuCHXjNC2BYu4biowXzWh0CkjU0r78xPragGpceiggOiFE5v6Gz4jOVXEK45QAtIxpV0axeKHA+tpgWmI1j67qRyYliQLHNQTF0X8F5JyvxlpBxTuftkV+9geyQgFunk4rp/6KZRPX4ksDgtFCEbrvf4Z7irTAO2hA0ORSp904E7deYtDpmOyq26fBWzK1W4UH1i2OMv+6XF
42 | 5 | zjqiw8E4XIQ5mwBdRHSkbOzV0FN/uIfK711LZ63MCmxNd94zX82OY9oo7sAnHmYMb1dmnE328xZ8yhcoOz1Op2G2a09WKxW5J2a3bCIMLLJO+8npZYB2Vy32UNbdNW0TZsm/mbhD79KOIpaNS41tuLaQTAzlVR+cA1HqZ9XlxMprxjR0USXijdfvKmjv+oFB+tHl+ZMxfejTImPanRZKGNypAUcBBSwYI7K8RgG/xru9mqi+rWX7doaiF9RLeDfxAQfjYpLUMhaGlEEQtUs/JffdCgvK8xK4oKJ0mnYnsSZWPZj668wiRy7wdjHvtU18eWwINRFR+SsJBWPAOu7rIellL0xozrjzC3CwSnuc3DXMNLLviLG7zE6EMKOTBJllHtWig3JSsfnekO455kZXNq3py8MHNgoCbGcC36qWNJgRYQ9GuTxXKiVKZ+aNVtpBHNsPcvRQY6R5oziGonXthcaVbafvXN2QY3OuHFtXCGn4cfEXdArxS1xE/D/C01wi8vGrsaReZGV3RW3mBWldgX2eky16CXu9nmWy7MQAWD6lHVEqUwbJfue5Am3Expq+mbvVTBsAhLAhvpEByC6fYWRqj/PhJn3y2gz78Z9jbgppLcYaIBkhClsLhe6LDj6bk2ZVeDgCwmCfnGsMoo0VlCPe9k3eWo6y2awVyBtvualZCGbpOXrrZjdtVMTVE/p2vPdEKmAUkEY1T7MarwWXoObI9c/XmXNuvnAHVpmhhyNSNpOEgUNFpBTwUuFhBNC6xAfeVjyvudFp96U1+rUYdHUt7fPTD8ZOOoNIQLpQouH+xDPf2P+ISHJ13k8pB7SPxWtJtwcGozMq0ME7xxwlRZ/smsCbmBGCDpkmvMclsmrGAeoCvbzH19RWy5NxvfsMsIHJw2gfciNsfB+e19sjN/guL5LPcRxDlnhuYTzq8lKbg/tqKRWX0FB1r9N7wIW81xiSPoS7rQjfJXuERDoBIGZwY3qaNns6Tni8YgZ2sDOYNHbfHj/rEjkweeE3ofHPQ0jBaQHhk7GnqH2yPyqYqnUxkgnYAEvrP2gprIRP5jluohDR9g0SlqvmcS9tESAONqdW9v9iqQiD85xYYjN+jpQscENOMQg4Lyu1MdTlE4Ykhz7JX0WykrcV8n2Lrps1D1TrEiEl5s84vtpr3/dSbZT+ueKvsAJzu1d7eDac0fBTx5/orFwfHzhvItV7L+88l6VzViqM+s4cnHmz9LGWAAIDWYeevUdqox/18thHCf0Rmcb2qmq5eG8g58/Co1ylLZC+bn67MiHVBF95PJeL+TuLf0kM3sId+BMXE+duCkAHs/oohaP3BHIGrnB/uNKl4FoeBjBZfYG7hWupIvLglbvouYN45XMTlc1EtVfZF9eKdTTYS44sOPhnJGTrtvetVvxBsUERg74jOeFzZ8Lez0tu4NTHmEI3Z5TBpd8n4xEC8KpSwquP/Kf7MHGFy5SGndQCXXEc5EbZ+k2ex7SpUrmYX3c+CkclaqA1ugTNLIRNCZbx7O15/v8hwBxRCtK8N4ePok9BnPfuGSSiDgHnQFngLYSD9FLnEvJpkyc3wrP3VBAOiougLHF+MePF82VZeCMUM7pfQe0IliYkmCiexnx1gEyivbY+krPEkGWC7Xv5Sx45UflWt62MaEPiKCn4Z0+HV36BfvjyWqN3I4oZ7CEABBNBZoLdKyf2xFXAaK473gfHj2myzbnnzkAUDM6n/D+t+++Y3d1fl8OKAwlFHAc/XjVIUsPSAfzzAZSPWrlUv4Wyawia2AZtGaDrpxQTtlZkeHAQzzatn0hcmOihwNtRTw7j71fRM6XUBettO5LchxsF0VzXInHS1BOXsGF2erTkh5CEGGkWxKusXKSFhAQKTY9VGvy+QMDsRSfVVgNj1uBOOLb+whhTiedLOiHdt+x6klomCGcaXALbHPqVjkeQ49nlPNq6UiogYErBYKB0ka366ogXcR5JbZ/VXzhMOJQ1+ojLhrfAuAvi
42 | 6 | +LtFavG28sAeb5tnCF7ify27RqFjcFNDQFnki541ekDGT4zOpgVoqueA4f1BLHI89M+2RFdul0JeZcsm8Jv0QEEVjrB4MWlYW/Qe4giUgu/ezM4RpAEcJSqggsg6OjC3KNNVyq2IagxWN0sVs5Sy+z81qimwJRCHYeEwyvq8wBJLouS5wafDGvZkcgtWWwNCTEWnLqmmHNq9+NrsoPJt1lWHQIySsh+tkL8itjMotgF/yNyF0QfjDJf1Yv8SzsxAGR2t9QKU+PJYqtEaHNd15d1pLAHAsbkZiF+uiejDI+zM/UqeLhguwh7XR4L0nY+nT+uWGDlsiD4t9tKYg1tVnYJLJyGIgC0Bh0TbuB6r087miq5YuC8bTqSQbQdPlQ17F7+WkNoHE997I98YDzoMoMTELGPDIl0Drnxna4laZh89kgUtyy7SeRLUii/ECV7/laawWYSFdDJqBiQbD27ypTgfrzPOcev76UcVwM6eoKNEAiTvSoxq6cmaARYXtleDGfzP55E67G09AWUVH0Pjnuh24/Njidw+oghBEMHhtWkMq6jDgTp91bbdNeQ0KsQTaOAUBBC3sDm25CSrF9UddIwcBrG0tF43RHESxP6ekqika3ycEFpIutLZcnhJhjuKIXFwGHwY5nZR3qoa8F/HWyey5vhrUXoxNDOrO/OvqrgRkqQxESl+Z6UlnPbrD1RvBnDYevU/l96RQkbz1psjYzf8vS9I3NgS5cDLUuXdQ28u6RXp5LbOQb+1EwvJPZUlC8c9JyexLLz2NrYHUorB2MFzWccaZ8VfMFHGnZ+zoRx0S3DKY2iV63e0T+zvw8r8/GIBQKnl1WEAgrvb+onW7Ibiztc7Hwi60wtNCrJUrM5co38ebvAEwo0Q3Xx5ACzLkfSDlvlQ7me03NvDE9L02PuSLOSi8H6DJpjXDj7+qQxwqTpkCI5aE0+I0ELy0rDqN13nxOxYT05a8u/fZmO6h5ugftd/DaiGMBXPH9qwpk5OLc/SfJ6mZLmj4WHOr+N2xBs3pI3J1AoPplnlWePMaigZCAbxfAUoTDobzEx4jb3VWqk7ggF7CT9rpx1iaU4Ix9Kab/ddPpecGdGHRlc/YWF9NaTgmeNSFbIFcyJngT67fL5m1Ss+sqoSYWjaG6Jzvko0l7up+EwN4u6mf/y/l3Jl2xMuCsIcYoVJfQZLeH3OgFEM2bfIITu2iWK95HcnhqdSJcso8SUKBMPtpkYJc+WQs7QCPbpWVHvYP+hcEd8en00kRC3ECMz5Xxc6LqNi9OLOVwsekFzGRnqkOjYJSw+B8LSnjKiOVKVsjo8BKT2TaiFNQ3YbY7twVguYAYBWCK3UEUjKoudGQtoT28sej2PDIQgdYyqbDlZIco2Wc/lkZqR8/v1RoGcIkxZ4xp7DoVi7jK5Ai6R/SvD36Qhg8rarButttU6dmv3kvKFSAmia2OafaQam53LVYKu+nyXSVjurXcdLmh8b6/uV51UtfTyfxuP5mX7rh7V6eiU3EudYooBkSJoqPwBvkTrHH5jksFOt0pPrW16BRrNK6Hqq5p8UBqdxFIQaBNlVKNkwU7MTYgy/fQQtJELddukinE4ero9QyrjEun4jJ9G9xGx2PicltvwcD+lMtAFyVASvnuUBaX4CDGSLhfC0KipOfM81VUz0YBoqMfqp6mr1E2vdW97jTvz1geehfYPwD1y9vv2zDVsfl8KPEl9IIe/bk8U81Z8R6rL6kssS62JB7yzjUNMdsrkQPNqjDAnR+l4mu2LlQ3l3BWwRXaZSO2oZJo4zZuoa0sg4ep99F+mdW3ei0BLMaxMlNYC9o9aEsQ2UilAI9drp+9SVD3TXR/cKs72zaorAFLK83ZH52qxB6QOJ5RD7yfqbko2KfaxeL6DK1xb/vRvDEWRQkwB3BU/am/vKiUBZFlrLuNzLvr8nJKgjY+KSi322IWtm3vQv9FbouBGaXg/YGHkQvpA/sZYfenX7TeDmelXszdVp8D2s
42 | 7 | u2tQWQ9LUFRJshB58s7lP95cwBxU62SNl6r2N+V0M1TmxnGZZn+BhcXpAWkNtbnC9WmdqocE20vkNAMDuqYG/111oiXn80pzsvA7Fed2exE6tx4cUtlYij3aXjx0JukFiAafOcW3H0p5szbSeR0mV/epb5gm61Y2f8iLAVAMYQROY/sGKZJmyHgWE1K/jYOIWXTyDDV+YL9mPARFnDp2/cH98BsfbtkCFF0nXpWCDtKaDZpPaf94yKMpOBiluqUkKDDWxpKYwXtY0t/xCT/3EJ89QFDL7LxHdJjKfkOshFg+q4PuezorLmCqGiQ6TbeQE2jNCOiGBpv4mTeKpeStxoNlubCE3lYODKNkJAIAbj4dJJ5CUPuSY1qze6QqMDScEoC2ZXlk5Dx6PmlnZX4xdQjN31VEbLQ0UvhoPCmizVS7jrs9VUiF0nKQl7sHXUYZR7q2IPmoqf5xDWNM4z24kd3Q3B4ZAI9CXArC8fIEA0Ei+87X9IbIPU/dnzi5EoruqMbuOQ8MSeIpSZ48CCQFkcksha4B8+cl7jRRMTUQwjM2grNI5txqxG+DPLH3YTJXXlzW1WsvDxxsEa8LedcqHXpW7yCxa31gKivp9R3L1CynL7yibnskv2PLsFvTJEk9eUqkJlZwE6lj9VBcvCWlgc4yGa3aN6M7NAzVn/StW79vpR2DnbZPrc7qvxQJquuIVkWiISh4lotqheoeqkqe3AT1TxvoeF1+qhmZwIWe9bVOOqaRR/7NuENU4ez7i7pX2EB/7Fvg9V1/QnOkIhDq6N3nYZByeaQQ420aLMZQ3zmycdvZLmhXmufeutWI/Tu5wRTq7MudxArJN2JEwP81D/kN+iWfPOKsLCkp75f7DufAQuiwTdotV3yExdjtrUZjPRzFqcpZv/vH2PrToSA6Wxoh1ParmpcAEccLx+9iNQJlPTvngGWJvzvYgyshVy92NgP/Fpvz0SHlOWc4qrVdVU5Sgnr5gjK44XzYzK7xWGfsoOeYoTRfNh8eEaDgvDJdMakePjXm2Kv7/b1SrP9StW3JYQjWN8odVAzYOM8aO+lgkUcZfIH8fbJJRia8PtYBL+O2vs88M9sLwXFoCJFXOx5CDNtFVKJjgRYTGzOwKOC6BHYT4jjFG9m86g5C2dOsPq4DYGbmxlKdjKd7WUXHhf1uAxl5LQRvYvycUdkHTMw3xbP1DX3fH5qmEpWuyn9eAFiqZtHtL1cEgMSkk9x3SRPNru6jQt00AzY8fM2vZ8t9HcIWFpBIG6sl1WYdxRtxLEchUyvdOuYXmC5Qqp5MHnoXvYkvH0kuKMFy10L6mrGrZuDIMO6qLfgTw25ME2dhsCTdsOMvqZNq17W4ZGJOMH7Rny3mAzsee+c5ytiwmpyewFUBG8T0EmVfC71GEYLfGnMb3a4ZcmMWwxa/a5ymQZj8njisAROr17/7TyJ2B/YuUX/HGxz5JoB/sREMPoMCJ4Rkl88yp838Yfa3KWkVqXgow5qtSpCSjF07Zuf6RggWGFzVFZILJYqaMl0wt8qG+iLgKuqjlkpMtT1M0XOEJXVs3yFyJq6GIRWpPA9MnpHUcaUsKF5NvwGCyAq4gAQ7RIcgVruoCh9QBVGu4vSnW2oixFdZf7HRvbwnCAkMjfDK/SZTWomh8MxHW5eYTjUGWpN2Mq9WztzNDKMoP/j5cnt1YFO1Omfv9nwkMJwDxj6tCrfIZZ1AHXx5lo97Zj4roEwOsD/3d8l/XAVZ8vrhV9dR/ynxeuEN5bhRwek2ZQK/vBTFkpO6eXkfoGHNBwznVJbxB0wX7jdil2YL0Lw8/uwgKeZ9FxoSdr1JsFMqO2xT/UdV+8DRYpl35uPqSMEM2SbIv6n1DWBj7Ex3IXJMYWmm4JCLUkcjmXuf12dALrOTXDJvXcnX1AyA84I3nArKZmGaPFfRcYOLvn9uuZyynOxQ2fzk56p/AhvR51LiYGuukhPJiqWc5Cs9SVjRwqQdirbAK8lKGPbgpts+
42 | 8 | xjpG24NDasFVpmEo5DpwXmSxaFpjejIrdzBsfGyfpUHmlNFPqpdZKywdOn9WlQa+Pu2wKobGI83DZwRSkB9bCwTRe0uDub/13vJ2QX2ajIiXAU5/8ZL8eGgP3xEOPyCPuW2KPjjAl39SMWkIrduXiv10n61UJVU5ILxiDu88eVmJmf/D37BrpEb1wa6OUEViX7UNlQBoXiiI+guToOdriyFdqlzZIaEvC1p7rC/Vs3N5sKcQXctEQdvUHnvRO2X6nAPcOhs/6j/vKi1rHbXe4ajuCwD6d6ZuyvP3h9kMVdTSqnDqN736hTSdGywIHvy+9o2Kq33UtvbUg13ILdyp3RlgCB4xdbo0EmhYF94YF6Z9vKCyCk8Yft5m7O1Rtg6gVtOpUAfcQOahdM24kY026eIZz2UM4XLAVroZyp6Fm4S+rBKXGHT1YAxrALU9RnoCy+0E0b9i/A3h5o8d8gW7gXJ7XMXf/TDxqU09J1HOMxoGzYpcPqt5EJCyJdBcnVrC2np+Z/lnCar+e1892ZNrKREL8yIt51Hy3hiyUqUcJweya/Vd0y0N7nduYY3WAAvvFoNsCRzmLmyvCWyMpoF9AYYUtjMMSfSIqg4g1MMbJ7DapCiwZBsDVfKL+K4l/GLGU8P6mkBI0W+/Z89jSZ4OW+SjmKNypw09ppEI8eud5Ao84SCVGXkNwohF58BGuLjV+nmSLiAgRtTUqrogcXVi3+r3n0/lAUc/R7Jp5r/kA3Tjop5lBhCX59IJOuIpUBu8B0jNN8JwPkmiwGYQc3ZaYJmr1mBsbNbnkQLIPhOQk56UmcvBbK/KCgr9UUCGe3WwfmoTaFnW4RE3g8bcUqCNwcWx+SNR2RlaeESRZJmYzaq3i6k1dxCPBbQjps1Ig8g9cucmeJ9go9NJM8MYq9O33CALHKi/LrCV1Iqros5GiKoH+zXQi2cOXskvzwkJ3Me9EP2Tn8YxwkSejArEEuIUKBJsD2kA/kTNP/GAZiG9tqhWY64Jkss2goPWW3TH1S27ex1S3RIBlgYrrbrVd8OifjgR6C0d/5hdNhlf15z8OEw8pb6RlOET4Vc61HZVueHhkmz9ZzFZA2CwCzeYQFbHshiSJHHc3OiA1rEj4BBFJGdkgK3KQuJQyfDut8aa9hyBBgf9mTuSnIq0eDYQ3QYI+0tVYc2usxHBH9whZah6Qxanah/c3ZdLxanN/9zWkuSz38UMuY+NaWT1pE83sp7b6Xa4igY1NbbMZJLm3XbxTpFx/GJ0/8607ONr5944k9Ul+DR+awmcOjPVMg+r/a6+GFg0SrcpTnez9yYuL4EKSxX0C4kbntKVe9haDWy3BpME1wDasmi7iNmypy+5WZxCC2klzUBApX1pcSXK6TdllSzbtO1gT/vYbbE1/Pg7eLueD8GWqj2CLLfjayqNkgMJJykDZ98KdMDnBAfhKPsVX89U4trz+l13UMb4gsj1yajgpihqEWLzc85Aa1mU0P2CpQIjTNHEniv3tSBJfIRm0TF+gogAy4UkYX6us7FjEYCN2qpGynsZo79YyZ1opMoTDMru1Hu/tv2G+bG6OAZYiqsh0QyMdH3yefqTIDe6qsQoQqxCOxHBqvzI05QeZVJH2Srnd3ML1fJh8UUD8F3ltgJcSNxFP6hUnK7EgZ8izqHWKZP8K0JPLysPH2FpjktvLekNkG8SKLYrf+fyGE/8c+OUG8VmQ+3pZHd/J4oHzZn/BdI+LcPQj8acXw6hKkh1ucQC3Tj2lCAWc1bkE+l6PUDZ1sJaAeqf430/xfoKbpkcdt5bfQOvuOk8g2iZ2xlH7iPxoG9gyiSHqYxSgYLpmEHDApYT1Z+NYQFjNkBljalXbfLRVlSgkn7h++OjninYMAjKizAEhYycJKfo9/9o6BjRdD3dLgeC/g+RLVtEYQAiCtq+dj6XVQC6TdzOPLUahI/6Rrd3qoP5Gk/kZrmvdnzKOdybjhhdGWG5EBcfzKMqDxPnDZZg9LUEySC5
42 | 9 | 1D6igcQlUE3iqWL5U4zg+Rw/daU5WKCCMQvN9iWI6EeFYUvBCfzQqmEXBdPbFcfOhp2g/2IrFdqYU+lcVoy4j8Wg8Y7laQ7O2MRPoYC3GY9T81Twyg4EclUUa8xUjvLZZH7CKehcB5RebyV1+Mc1aQZRk2yoaSv2nS9ARJ1zKrsg6wv8uIH5qxGCzqi3BDncKuw1Xw7SJh1vQBioKg3n8sgbMUFSRCBNkDcbdo9o2VXcbNUdCu0brFc8UIOwBY8rWNxQvf+T1qNgFhphLOPJmR8cxwLu32s/w3UpsH5U2xNm+BWP+6rZpbJK3y78RVKR6uNK3+bZxgXRvaYK7sOZcYDaEsF67A/GwSpa05YPFhNQEGRVGwUfL3Z4/BaCHNHP2v7jtWC52JQDqUSSrKfi9hrzgu6JNPeXLGbFTQNeuVBDZ2IQrLvRhQsckRuJh2t1Yqbre4BmPkJDNuJ08vTkMsmHEtNmx7vmG5NazL4PAVfWo+y/cPu/+gnQueE12SKOtcC/d25f8KnT8gpZxWbOMlkYfksvz9VpRXqLJWSvb/YuCedx8DQoP9e41/UYRRnDEro3qQ9/kNt9LaBmhfsDY7mBfAQIrZ4+3ibNogj/ERG3nk1wLYKvR3qWjjsa+vRN/peBPMSgu1Sxw1ceJoDd16jK+hknhr4Ac5pwCOIzK8vYQoM+Fp80ycfHbUmim/aFp55DiDsVa5S1Rpk2o6dmOMj9GUWE01k1pXq94hFWiCoCAGG1F8AvtqBRi3NrXgIPGJyGhDCR30ljOIOZInS1Ql0m38mlRYJIOFijqz3fS+DzuVmGUlCxmmH0JVoWXWKsxTuKPodub95WdGGyh+kID4MyXyppyUgJreyHXMgBQWNLe5r+Qr5TDTJJEJe8PzQlYgiZioYT/wan0vGeuGOr/Y6RxMyhSilUxVkBBmBww4KErMmK07s1NCf3VtfTJCA7tOTASBDweVy+HqDi7SyHZhvt6I/UPfW5bvlVwKSN+ABvTUWmTpePsd+hDjLY9YReA4OjdM5QuK4muxj8GXBxi4ClSXsNJVS6Db1wSjiZnYrnvUT9ZY4GjvTC1ObjnbW304WFnlMdnxe81v8416P54YV0uusQ1+5WvrdvHMTBEe3CWMB65NtzR/I7GAzRbSxCGx0M7Lkyf4ymijSthRx8YDsin74Un9zMrpMn8KJVG5Ki1vd1rYDR4OcvQXhLpOwH+XrfJe2zG9sBCC6OWZDeTcxWMBx9EN4vJIPG3fukMY6QEXop+Hth+v49g6357EinqNsXTRlevSaVZIGA7ZUuIBW1LJJTDpM6V0n2bCaFSk5WJzB1idadbpupvyFJj038WKhWLlO2rpUcABF8uMhu81FMeXxPoZCMRnyKeEWpJiPYTfeWUuIAQxuGQXU4R4QEKvgjhCnp9YsgDMl7+uvkdS4SbCPMbkAZDpR7+WgHDM/iLQGs9+iTIKsoys6GINZ8adID3+QsnFjSx6yOLvX1CVsmQ8tlYZw+2lzes4hKmBn18xsMCGTnkvOsuRvetcWQJEUT5+EC7W2gGZxSsoi+z3m8CwGqirIkOhdx7nA9C8NjXSyxnwgDLVr/dZAGh6rwNdPGK/p4rMWhKoRvVC+qI0YlIbbuETUbu15lOLo347smlqbtlwsAtt3EC4rRtMT/YfWL+zNdMjbU6rcvWVVVR9SSICwthuutKV8O4ZCLpVo7YpKWtDtdqtsCZqprsY0hGgc4eVvNJRPbp35Lhyc0muFryCZv5SVoOudJkM5KIM3iG0sDzGJ5k7DKO5QgMb0lFEHAnTHVVQ8f7Z208L86PNTMgSAZmcCptxmasbgXlAPFyt7+GwLmZXwzYK0t2OlNVPGubduOhWzXw7gouj/VWzS4orrbPB3k1h8krqcrDk/TlRD/h8q5T+jMbGjw4SEydXMfuQ5Tppkq0YgZbCcgUefFHfCCeTohQmfKTCIG5O84O3ewJuZY2DFaoFsHd2eyoy5gSJOdXX+ImPeL
(
Embedding Into JSONB Still Feels Like a JOIN for Large Documents
Think PostgreSQL with JSONB can replace a document database? It’s a tempting idea: Embed your related data directly inside a single JSONB column, and you should be able to avoid additional table lookups for data that is always queried together, just like in MongoDB, right? Be careful.
Unless your documents are small enough to fit comfortably within a fraction of a PostgreSQL page (8KB), what you embed logically into JSONB won’t physically be stored together in PostgreSQL. The result?
When you read that embedded data, PostgreSQL still performs an index lookup per document, just like a nested loop join in the relational model we were trying to avoid.
Using JSONB in PostgreSQL has its benefits, but it doesn't operate like a document database. SQL databases provide data independence (Codd rule #8), enabling developers to query a logical model without worrying about physical storage (until they need to read an execution plan). This data independence also applies to JSONB. Conversely, NoSQL databases give developers more control over physical data layout. In MongoDB, storing a JSON document as BSON enforces data locality by embedding related data, to improve query performance, sharding, and transactions. In PostgreSQL, however, the same JSON value may be split into multiple rows in a separate TOAST table, only hiding the underlying index traversal and joins.
Let's explore a straightforward example of a one-to-many relationship within a JSONB column. We will also examine the execution plan to uncover what occurs behind the scenes.
The normalized relational model
Here is a typical relational model for storing a one-to-many relationship, orders, and their items, in two tables to adhere to the first normal form (3NF):
create table orders (
primary key(ord_id)
, ord_id bigint
, ord_dat timestamptz
);
create table order_items (
primary key(ord_id, ord_seq)
, ord_id bigint references orders (ord_id) on delete cascade
deferrable initially deferred
, ord_seq int
, item text
);
I loaded 100,000 orders, each containing 10 items. Each item is 2,000 characters long, to reach PostgreSQL's TOAST_TUPLE_THRESHOLD (typically set to one-fourth of the block size), and get them compressed. Documents in a document database are typically designed to align with a domain-driven aggregate. This encompasses all objects involved in a business transaction. For the order entry use-case, this includes large text like the product name and description at the time of ordering. I generate random items with a COPY command from /dev/urandom:
-- must run in a transaction to avoid showing orphans
begin transaction;
-- load random order items
copy order_items from program $$
base64 -w 2000 /dev/urandom | awk '
NR>1000000 {exit} # 1,000,000 rows
{ print int(1+NR/10) "," NR%10 "," $0 }' # ,1000,000/10 orders, 10 items
$$ with (format csv)
;
-- load corresponding orders
insert into orders
select ord_id , clock_timestamp()
from order_items group by ord_id
;
-- end transaction
commit work;
-- finish the work with some cleanup and statistics gathering
vacuum analyze orders, order_items;
This dataset illustrates a typical one-to-many relationship in a normalized SQL database.
JOIN on normalized tables
To fetch an order and its items, the application must join the two tables:
postgres=#
select ord_id, ord_seq, item
from orders
left outer join order_items using(ord_id)
where ord_id=42
order by ord_id, ord_seq
;
item
--------+---------+----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
42 | 0 | 5+t1AMDYze2fBYi3M/Ag3clRdZHsQ3YfSL64kOwcsaJLJICuSVL0pi4laZ/T01dkOeGtVDiklwBinLa3Hh6Oz4gcQkwasTS7Ir2FPGVqC6cgMolM16CHLDEDCZ3V19vPQT8ajtBHnm5j5xMvJaPz+Gz3h2Iq1z5QQA5C0dghj833EDw1ECitKvTrseMJzsPUq+O2UKMrJLkFdqJjAOArzaYvx7weT6lp6lpwwGURI4j3kHvMgVwsN+q+RoFwW3/7rBy+io45ia1FCW++hc/8yZv83koYao5vfFfIfnhC1htlXqz5tFIOlZHQ7aUfVkb1qBl7gkwNIq/1o3JNX+LAx+kiE7geiX9HJrGJXzHtVjz1fC9SJocoRFf43IY4VlPIl0xn/KugDl6hVUexQ+poybzaQRRzjaI2uPMpWgu9nlXzdKgm+RXmuRcBuVQYIJJP5/jw96Ow1QrgvxLEeOheYNITDgAEQYHKXSOxgWTFeP3+LyeAKnmDlihEkiKXBUt8GEhfVlz6IkEehu3ND0VM8DfG/TBAy9S3r79RoSTAkboMYAAsqw9JtqsqsQJgpwmhJ6TQDhp9gAI0CsFXwBWwFtsw8qQiVe9VtRbsW2xp623QSfw++5q8OVVU+sWZRM4sH2tmtKSyQBWKCpyyVNFufGNzHugbQ6KETjdr2FKd1GD7HfaVsScBgo6/gGsw27EH7XySQANSGrk1JpYVFVAb9CcXittiFnD4EE/N5r7PWGM6HBsOkatPa1+4gyzjpxoyx9y1EAJo98KnezjPbg31AZo+kt1aAGBX0np2MTdpD3Ci8EStgJLXUMRCtoblyejv8Nw0r7OgUJRiw3ZjADhJTNpjjfvXrawKM8RTJUMNpZzF/ebD0xNr0W1NZD17kH98ibojId3hO9AQ7EOy4lEJYZCIpulqb7XHOohWmkGC7X1GBzNXQVKcCBSU0Ew1p8EjYjpIkErw6GESqILlPK4Ko6eK1rn+jJ+xEvnxYshcCUNki5S1YX4mf6Jh06miVjZqSSgwaQ2KYrroHdQIjdhygkH2aV3RpYo9BXE00KiL6VJzTvwzVyxQ/5rCTPZT04BWLAg7bOZu6itbUPvR3jMury2iTII9IwGRqEpgS4BVYxOGqTEZNpwwiideIvAHZaX4HgcDhg2X3uDjBcyjLXiUckzlgeWhU18uXE87MjWgiYipvkI2c0lTQG3pHgPwntjAMYzCMeet05UWCPz2JxAVHUKT67mbf3V+bhehyM4pVWkIxBAQyStCSY8WAj4OtlnWAKVcXDOxpy55dg1JBGQcuQsqVOXw9uLrFAuShKTmPOXcZT7SupbsVGrarvkpcqRKdeP3Rcmarlp2g6B5O7kHQhjRExTqCGKyFIWGi+A234YtusS7ZZMaAiJGEb9Oc8Qxs/F1ELZ2eHeHNk1Tw5cNBxkTMwy3k2Z1HIwB2iJyiAIT1FYJoq22zsKtH0jbzMgcnqjUeCTvcLsmt8Z9qWP/om7MjPqLaj+7zfISvE6kCgOy1OUnWlawKPk59Z9F9JMeLcTIb4+ePc4fmrgFqOCWd1iPCtN26nLwpZ8jmEAQswwVwFLrSCZ2ePN4ooIUyKrkFSuhgvhADGlKspx3tE4qFPfg7qE7Scv6RSCDLo22VbpNewtRP8FOVo1sFYqI0wqRh8cIcNR3K0n3qsSrw+LX8fOQHcPkQLdw8gjNs5XSBxw/ZoqwSeGcfDZkOftXW+St1Q81PzP9dmgvqk9IPWxjicTGGPDWVWinZrASOdkPKqFgdJdTcNWPwSpqXGMcQ44dp+FYj66aCBmImdUbkiz0axMKEoMM6NmusoIkovC7Z/tEA0ODYXqqO9RIVmDLfRDwWCtSkkiwk3WMWx/RQU1cKZwZCnLcBjF7hyWFVQ1/rG7Aa5vjz+MScjzGii3SY4GCWqsc2lOeCFRMf1ttOL6hRuaLJgvAR580Ri0DrExyyuq83bZWap4gSwdrMMh7/IukZAqpoX8HbJDQz+Db
42 | 1 | uj5i6zVF8oE5zUW1VKg1SiTXfB0avNituKrUseSycZmceBl8OsLDtsC02BtHGZxTio/JtM0I8Ur05ajt4g7cds3AqiGkU+TzpTXeCnRZIIk8qPxeUwI+eSmAsHxZoIap0PB+Uwkisq1omximnR1D9zLt8ZDsadP0SC5JFv9AQMzF/sic2YtbmifIyCQNbEBKMQTfGWOe156x6lSPN6L7muxybYjVh+gZ1gucxcbYXVXt1BP02BAhTzxHjCnEHTxyOsti7ENWbBfv18Vni//hjyYYmt4z0WLdurh6T0mQqAHpwf2W51rpBsF5sKwA9gOus0BwPyzILsQk4upscXzoVwgdlXhxDw9oc2qSx5/ks7R2uNXurD6kyfjRV7LCtSsNbmfKRV6hno+fJuyGvhX0RM+1/+b5qCTTS+jSq+xCXV2dFcYaH2rQBbl0H8/Sr27tWHW4JV7N/P4WpMGBBIw1EJCb5uOF/wgINzCXvlt9JL/XLqX0dohlSlFoVVz0fq1O1LXuwTeGM9/hiqA/NkGURVcSzulvp3AftacrxoX9AJeZC9htcG/veR3QKvFsNRICqUdmgcHgpcS26QhZ1dxkR5p7GnC6+jxVXi6YRuFiwPdlkOhJRBrMxStsYMaBxZKWjd5AZ033eaecNipehTwv2U/GzFXAlIJbuvB4fHHcJFiPJP5c9YS8wqj/LKZ5BECZhsP6e7z3Xya1RFZeRHwz5I7MI0ceJAIMJKuXVI3DHS0euko9lbao8tX1Kp7nAUxAzmL9O9cxO2oyjy+Y5Lg/iA8Ndax6joBixbPuijYnD9msCdFbIjw+DURj5UAXiQVDqA9vut5VM6729EecHcAo4NjG9GoQQc9+Jo8Ni87vEtUcKbr3RuDXxtXIgoxmA3z8HVoNWx/ePk3i46pNb3skzMIto44R9VzBlwb9WOYDVeB9G/R4bFviHcxEJhI1KNphFUv6qRFRTmxs2ZUGqqP9iwAQA4/8BMK9MmzHZEKMduQsggasgCIEVSMyVa+iNGRYffc60LLbA9w7ZJo5otTzP+h3xUamB00KXKUyccdW47JEQofmyXarT5/gpN+iqBbS+CgWiz08rZ6BVReqf1qxfMLb0jDjQHxku783YriggE1Yg992peRz06wHP3ZMJMBJaXFg2iLRCppm4VxI4dlQ22DrNGJKkfoaLStNmYDp8/EX6Ep08sYmxyZ1E8tpgN0/1wZigrK1Xl4YPCyVA8aDHj96Tjsq7RMWVS39MtsW8q0jzF+R5OaNEQ2nngkMI0gwSAMod+/HPQAr3vHTM39QC8K8ML6sPK1TlDGgYlXswX4Soxqq9/pqEsnX/ehifH/8ZA9mp4Hz63pT8VRZiiwBStjtHh06Ipx1HXK1lnieL2KjaOgGCqozfn8JV4pWFyfFWvp3QfWag8VKvlvrvg8M/DsdkvEq4H7vnx4zrF9LZneZydmomFWXbfVY0lBDzFSACB6p3LncYvFRWOVodpE9VQ3c8etoKcPdlYRvUstcE/T37QSy4Bdln/lJuq5pxMh8NvT4MA8W6zaOjM549tDbp6NLBVbVqFCqfSC+njJL658R1+vyJ2LHByfcOtDk0nKZuYrpsSGHL9qH2nADLLJ9zXM5N8oLrJH+J+/PapkI4sv+JCTZfpfBom1JKf1Uj7KDBfnYqUzYf6wW9JXr4gKNPzSMWY5CrKxvFzZObbW2uDYKBIgfhv9/9Ofbz1Ti2gcWi8jJxkI0leBC8b0Jhefo8F0ui7YdMPQbJOElDJYN0x12qSadSe4NWzPEZtTne4GyydMvSzGC2IQkbiHkCLDGslRWS2Lwjs8XOKTpzk7RshchccwWZM9FSYpwmBRIa2LGwIegHGV8+0/Ii8SdzENyXlzeCzW80wn2O1RdRCtucmIKS6/awBnX+5btVDkJqMOVucGZlgx08JPkh+OT999QbZosxvD4RKO3x0JyHX5pqyNMR+Xk0swDDtLDuIhNvOgWo+1ERQQu5ClOd4hE
42 | 2 | Ut06CkC6oRwX6lpHXeyE2vAA/k19ZnPG+Jwbw7nwRA/MrvvkXpqic42L27jTc3cKgryQSM3SyEiejaWYyAch5FpFsakTCKMBUSnWvKmsvo4JqROZvzXfePw9nhNhSqR+Djg46OMaUTaLzC8UeRxSGyjutR1I8Q8mxEE57av/KS885t1FtnYGsmbSbPyvd8Fq3SbVelmkIvno7QuW3j5te3GPINcoboclhGYUG1dvV5KlqyAWMWi//3N5odZXjPLnU0mPqjy2eYOAwbfvozZqQ5yL3B09xJnIV/ymeD4YsoBPsFw63m68YefjvH8nvzSOABsxBu6s6/SdtQIiBYOEZJm0tya5LFxxKuOBLDjjjpiRYcfXtdsiag0G3e+Eag8JNY6GydD38KtAIl/hDACjxJgTcfKN66gHFqpeICtOraNfrjCnxx5lAcxOlP973r4I6I1myYYsvSGmnCzWyNPQTdYHxDxqtesP7XZMeXcLFP4cN9ueNDdzQ/cjh0AjAq9G25qd28lKGzmdQhVZItES0liofHglPEtLuGqIrscq2LMpcebg1TwkUXVixTninQvZkOu+F9txTaC3GAZug0Z8A4U2IKaSmShg1bYU/HCyEVOImndD7Xrj4lpyquWJdd/IK3MsNTOmFiO0ZGNerQ69C0Xy6/O8+kKFPB9m1JD2N4nKL0Q//8s9Lx3FDe8ClLflavgkHouqldgstKN2hXdZWw1vSrzkhI/uPa7KLv9J5ZWJQIia4QU4ry4HP59vs3BPr6qsRZcndzQyKmlEbS6eerhbC30N0C4GEdJzuTTpY4wn1erSW1V6tzgEgiDeYNrL2/msNAWpbYXMhIW5bUL1SpBTnN2Snf5grLCZy5DexiqCUrkwXjetDlE+12IKMd8a6p3ClUBAhKNRKd8iklpQdLe3two6ZCS5lpVcMF80Nt7teRUEt8c10z+H2SnOfwbyy315piLGc2g/mVhvADaT/5qTsCG7wohcCIjKxo5a5TOYXAuYGkKW7ejUWpY3ZuC3OpMKWQVa67iiJw8wbyUm5lW1hDqC1qIJ9kFxclCHR4DVhwd1HzP5sa7qy6h5lVKVX94h8hVzVOlRbba4+MShZ8MWyOHNtFR54WrEfAipbr//RkzdRcDiJlPuZGOPWlwO5LvI/IANopyX6XhbPeWL2Ji4kYnxzEArFzy4US+9VzapMczkS3158KNWVNI15BEJEybb46fzlgF1DvWafuuhsOO3wyEGR6FVMwof+20g55cyOc9sUhnQj//387KGWjoHL15ka+xy7lDB+EAXgYV4ecGWZyjwGozMRWxOhMm+Ksne/TRuifbUmrCyCikC2/r+UBsCH1wnr66d4oDZeahBGlVew8Z3mHzpYTurwgmDC2hFWyNWQEswMM/k9jJZ2i5DvQ40JnNVa+0rVghXXlpE/nIUN4jCOEBWqURppkc2Ze+zC4/tUHZANarfm32q5n55gFesBljTJhOKHWOAU2Ur9lzqev8zKwYZhXVCaQTO4zTJl/cRtGrvJkEzqQcxbn6BoBVDBA2c8h8yc1/mgo4Pb1KvJ7bDyU+a2w0vsuEsG8MXZrPNPvsJ7IHBad6ywIZepvKIlPbjNXflDkNxteXa2hHJqtjGwB0VI8hYtuen8kp6iiLBmft/HbcIKH3CkcGlKc7gZET+t96VbfQe1VP97AxAufaZMr/sabVf/9g1hVOfUHPbBI+aRGvz80EIvWo7Ipg+mWOwFsUx4i9dLW+SE0f1ZMPDSAhvshrBN7FNm+WtbZYACAPjBkJTVAKgR8IBzFO5eVdlMOpH2B6tTSbqhIBlmUXo/fIiUZmD5ftcJRVBcgmqpA1TyyHBx/DoATjFUbrYWeppHtpzBrZSm9Ug/ERd6Abd2HpSrIuOQ7k9L71ipNhBMuOp4k5HwTYoct8+oo9w/p0TBYU4wLTdpWG+YtetJVWwuwkQ660hvs/4zN4sMfyF0DMr7nYLKGnCNdrJ1IWdzHj2mIZsrn6X
42 | 3 | J5H/qcr/LIYU/P1bF6kOZMne3GpmogWM4Nohs7SQsjxUwfm7tyWHv5xsLZfOn6JfH+s05BB1mtudavjyqAWQeK9vLdmHZp9GNkBBSZVie9RltywlrYG+XzIhltIreun0FQnkBzpug+dAhDWBASzusYufeH4JnqZJZeqQ0E0yllTimL94Z3k0auA6nCHEoOeZ/DmOskcQofSSlX6kZoCFXpo+Lzg1iGP2NN6y6KlHJ05XtzJlOFv8CfeniKkSpXoHTiOaDo2KChJ9jJ0UPiNGFtiSOuJuWNmGIApkWkYx4pJbcs+UCHYwmcVmXa3P92nidmNbrmmc8w7z0uVh8gfNL6rTeXk+MhN5rtWbcJOsuU73Zf5ge3+k4e2wqlda12/k2ZNR0g95tyyQIJU+RBldeh6MLS4USCfONhSJrncTZW3Yx8erPR8GbXIXr3cyQUL7ni613Zs3Nv4a1lcCnBZGGRvEi4BEpjjIOTMCRVb7yTfrMTG8Vch0qh/i1i99c5cr1kA79KhUh0gnItwAjAsNbudTSnvhaPq30WaD/1fMFNrpvY2UgLDFuf6H+Lf6+P2Wge6Cwy7LK2+wyqhKd3Z9WceNx2a+KG1pwGIirHdBh5/RxpnD6UYHo+FDxn8UNvwWFYy0pqShRM2sORn+IUW+MYM1+Z2sKQwGwV0S0O+39VQcRZhm176/x+fhh0vgb8JlvkWS1XhoEaAd9x5TsElpVA+L90iOuOvtRo/exPGQ0qFHe5Q5cDxm456xrg+Xprt1zJoVZ8jn6IX/Qvldsg1mC3nK/sI0f3jetuggN0aheUWQERQj8x0zQyylT9FwtH9bVPeK+PltQMYgaao0Yn9HNCBrwBxIpXuu0yEfuBjrZrOuTr5JLFS05Yyabe34R5tht7tGLsQV0pm9BoXBS/7MHSYDbRMBNT8sAuEYK/ePEZvsHXRCXKxLsx+M052wtXu3ixykLYoc3SuoEtg4x+frU8egWM0pKQCbbJf1IYtrWqwmzxwC4q5fdDMt6CcXaMv1puHDIze4KllbQpxTcRVzBY4152mhRIHjUCmGLwWbLTRHqHv85IC/YtLNzW7dE0/vrdERRnmCebtxF77KbfMDzrDaL+CHhez90aI6y0fBS0j/9pm5Y4n0b7F+75dugM+aSFb4QNOnmXjFVcKxcu9+9wr7GX26UHPX4qvu2L599h6AQyr/QUy+Q0VpL+W13WzcP0GmQZgDjBPQL1RhXVcsk03AH0TX9zzdKgT06tOR9nITi+v0IPffh3QuDX9sNkQaQKX9bBgvAmGr8EObAMDUf/6705TnTfkOZ0U702cDLcFJM3wI7qIcGBEyaA0K6oJYULdbXXPKb6a1CaRq8rQiYKbxq1o9sldrAt8mglEdRMXl/onqB/rm17kGrH2NLsApyN3nSUU446JQEq6zMNd+eR9jPJAp95EYSLILv04wZgGc5NNc8M5PkeMGe5CVZ73k3t3fWyxxHV8cmdoN/LI0PY43yo5NeKnpY63Ms2gWXcAHMrNEsYaSO3QdxHbcaSm+9jL2CSPjNsn6LwTE4UJ1ujttCEmbTkJnj1LE0uSJt0WL8bhCWjbNRYiOIcvJ9bfrjTvGTd8b2DoV/Q2tqQhlcuVdd6sHeKKP169dl+c2C2KUG5y3W61yStJfjaM7IppXzX9lmn46lu37GgWxVLnUhpZSB4r4jvmR/sGYTidDp4L6GP0nEvpuQrzUCUdFYEPI/Oi//MrHUoVB9enS51hLQ3z4NUyegx27KoIDju3/Dwe6ZKolKjCVjyilvBp+l3fC7Iqv/XvccXQf36BQxNIQ2lfyjgS94YNTR3u97GOxAdC6zTWXiavXc4lgAKnyTpnY7KHB0AP+Yo/PsmOX2uhEKOLjITOYUgq4YVIOstJhjLjklzkCh0kL90anVDPD0FB84iQmDZg1nVYahshFo5g6rQlrWcoGdlMZn+87z0NZD3HBsuRV6larHL3xUrAV8R/z0JIGT/+6NYk8BAZp
42 | 4 | cbOntQ3xnJd6r7rPntT7/v8Z1dSMK9dcT2vDemrRFOgWZ6sohFKlDR4GtyNYa2EYfciPBLkU1SKFwE8rOH/DfvQVI5Fk8To3OSF+Lm6zyOTuN46q6/NFqJeaUbefN0C2dSMjmEfp1kwFxsD9bshVx57tvuxyLM88ACXK5DobG0RZka6Li7hl2jzRzfQVF8U+cQAXzvkO5Z16Egra3RqwRfvtq1hSlHDoceGaubXZyniszfUtCvvRTkJIjUgRkRPZ4ZXSEUWGl+sk7cT6Z+/bF3OyrpUwNMTcoPY+4iWSZg/zWKjJRvswE+Xnep+lE5CMDKlbb38a8A9+nnWjuo7N/JgfN490023OLXsHGa+5d3JZbx2b2Z/wd1t+IjOhdHI2RW+wypTqukZU3BKrrZKwVqKp/nfgf55iDSKWV1whyibv+zclOw3hmgR+lWpqLLoZF53goBjH1/qXXiWeTsxEliUsmraGcxNxvwTADvboAx+1gDJhJtJePUCXeGqTg6SRsGcz+E/7+l69lIH6nsi8YR4DFyUxj0T5NNNEoG9uRK0597OjGF1vtirERleS3znZEbHq+hx76UvtWgaf8udJd+sjsHQ5d4XtaDtZUi7Mt4N04lCaMBu7i4EZodjLnpNO6f3icmBmeddXmVNMtw9fC2wEjvPnIi2eSqFGy/iAXHsMjVFyY+vIjHsvLU3uQSyKPMPYIGoI7nI49bosctmcUsd6CVhZLLwEeLA7Gjba//sdCjZ8Niup8hgQR+JL6w5dCTUXx8YeFGVf9Z1cGJ+xAO3ywX8EFqJo5f0lE+cAJ0h9oMzNb+5DQvwxhTFr5ig8bYvKQ0UCPFEGt0v/P2s45/STjI5txdtCrEh6+0Y+1FmkHd7FiAPzf26es1A11ZQWU6URVBXhULjDGxdeM94Te5rTZve3rr0b3EV8L7qS8EW8ixtmA7PhupL3pwTGocHyVQZ2wJvIl919ESp1j+BcdHC1eYAmMcsOW1n1OIitPNjYuM6tU3twN1WA6YUfPPdRhdcuccaFAc/g68zfrdDpJfYAyGz2NEK2D6dCGSjxQmWXuVtW9ptiNHGync4TaRjA+BDFjZWg3cqn+AkML1eKfqyxcFp74zeZpSgkahAhKraSL6rLZpPffOB998WG+W/uRbb3rKjepXBUNiTYjLtIXmHCheisGATYYpfLxwT2H1mso3Taw67W2qZYaM0/ucFOAZoFkoK5Kib9f0P9JQ38ojsascPWRM9x2efCjUwzUm0yX/tEpTXkW01+n75HNheX3JRXFlyjG5iyjBliFGEHK/wHu1g5E2gxESlfSp+RWWcrciNFUaT7lfa6hOfWlkOUBMNhrx01tHtMHHQYzWSDNu8SAgEHMHn/LbrUh0mKg8oRg6/lU6es1BKFGbT6HUyQARDod9IO3kXqDlSLXcxWgrnoGRasL7uayV6iLaiu5NA8AW/v6vVLBR7rIVA1a/z/1tArCLw31+/418AsQG9fea624n5U5l5MTVR1zT7PbzduSSRpro5UKW1UntRPde8vF2cGjJ/VuThXrwwnme3r1YJdSTIFdZv9uNWHmJTuKs4LYM1C6jirzO+UxRiAW7Lvt7Yk9+v0b+W3QDbhYkpzmi4yrzGzsTlA2Mdpvl9lwcl/za83vBXWYClT7tNkN8t4EdA4ikAFzD5113QdwdQbm+it/A4brtGev4mQeala+F8IQ9jprsNZ1lbjvJL9jAVfX4zJUsj8I666XCnzhf9xD0dbRWslLGgbHnlOj3JEov/UgeWR3XXdFfi6JIjcHLUj4xI6CuCHXjNC2BYu4biowXzWh0CkjU0r78xPragGpceiggOiFE5v6Gz4jOVXEK45QAtIxpV0axeKHA+tpgWmI1j67qRyYliQLHNQTF0X8F5JyvxlpBxTuftkV+9geyQgFunk4rp/6KZRPX4ksDgtFCEbrvf4Z7irTAO2hA0ORSp904E7deYtDpmOyq26fBWzK1W4UH1i2OMv+6XF
42 | 5 | zjqiw8E4XIQ5mwBdRHSkbOzV0FN/uIfK711LZ63MCmxNd94zX82OY9oo7sAnHmYMb1dmnE328xZ8yhcoOz1Op2G2a09WKxW5J2a3bCIMLLJO+8npZYB2Vy32UNbdNW0TZsm/mbhD79KOIpaNS41tuLaQTAzlVR+cA1HqZ9XlxMprxjR0USXijdfvKmjv+oFB+tHl+ZMxfejTImPanRZKGNypAUcBBSwYI7K8RgG/xru9mqi+rWX7doaiF9RLeDfxAQfjYpLUMhaGlEEQtUs/JffdCgvK8xK4oKJ0mnYnsSZWPZj668wiRy7wdjHvtU18eWwINRFR+SsJBWPAOu7rIellL0xozrjzC3CwSnuc3DXMNLLviLG7zE6EMKOTBJllHtWig3JSsfnekO455kZXNq3py8MHNgoCbGcC36qWNJgRYQ9GuTxXKiVKZ+aNVtpBHNsPcvRQY6R5oziGonXthcaVbafvXN2QY3OuHFtXCGn4cfEXdArxS1xE/D/C01wi8vGrsaReZGV3RW3mBWldgX2eky16CXu9nmWy7MQAWD6lHVEqUwbJfue5Am3Expq+mbvVTBsAhLAhvpEByC6fYWRqj/PhJn3y2gz78Z9jbgppLcYaIBkhClsLhe6LDj6bk2ZVeDgCwmCfnGsMoo0VlCPe9k3eWo6y2awVyBtvualZCGbpOXrrZjdtVMTVE/p2vPdEKmAUkEY1T7MarwWXoObI9c/XmXNuvnAHVpmhhyNSNpOEgUNFpBTwUuFhBNC6xAfeVjyvudFp96U1+rUYdHUt7fPTD8ZOOoNIQLpQouH+xDPf2P+ISHJ13k8pB7SPxWtJtwcGozMq0ME7xxwlRZ/smsCbmBGCDpkmvMclsmrGAeoCvbzH19RWy5NxvfsMsIHJw2gfciNsfB+e19sjN/guL5LPcRxDlnhuYTzq8lKbg/tqKRWX0FB1r9N7wIW81xiSPoS7rQjfJXuERDoBIGZwY3qaNns6Tni8YgZ2sDOYNHbfHj/rEjkweeE3ofHPQ0jBaQHhk7GnqH2yPyqYqnUxkgnYAEvrP2gprIRP5jluohDR9g0SlqvmcS9tESAONqdW9v9iqQiD85xYYjN+jpQscENOMQg4Lyu1MdTlE4Ykhz7JX0WykrcV8n2Lrps1D1TrEiEl5s84vtpr3/dSbZT+ueKvsAJzu1d7eDac0fBTx5/orFwfHzhvItV7L+88l6VzViqM+s4cnHmz9LGWAAIDWYeevUdqox/18thHCf0Rmcb2qmq5eG8g58/Co1ylLZC+bn67MiHVBF95PJeL+TuLf0kM3sId+BMXE+duCkAHs/oohaP3BHIGrnB/uNKl4FoeBjBZfYG7hWupIvLglbvouYN45XMTlc1EtVfZF9eKdTTYS44sOPhnJGTrtvetVvxBsUERg74jOeFzZ8Lez0tu4NTHmEI3Z5TBpd8n4xEC8KpSwquP/Kf7MHGFy5SGndQCXXEc5EbZ+k2ex7SpUrmYX3c+CkclaqA1ugTNLIRNCZbx7O15/v8hwBxRCtK8N4ePok9BnPfuGSSiDgHnQFngLYSD9FLnEvJpkyc3wrP3VBAOiougLHF+MePF82VZeCMUM7pfQe0IliYkmCiexnx1gEyivbY+krPEkGWC7Xv5Sx45UflWt62MaEPiKCn4Z0+HV36BfvjyWqN3I4oZ7CEABBNBZoLdKyf2xFXAaK473gfHj2myzbnnzkAUDM6n/D+t+++Y3d1fl8OKAwlFHAc/XjVIUsPSAfzzAZSPWrlUv4Wyawia2AZtGaDrpxQTtlZkeHAQzzatn0hcmOihwNtRTw7j71fRM6XUBettO5LchxsF0VzXInHS1BOXsGF2erTkh5CEGGkWxKusXKSFhAQKTY9VGvy+QMDsRSfVVgNj1uBOOLb+whhTiedLOiHdt+x6klomCGcaXALbHPqVjkeQ49nlPNq6UiogYErBYKB0ka366ogXcR5JbZ/VXzhMOJQ1+ojLhrfAuAvi
42 | 6 | +LtFavG28sAeb5tnCF7ify27RqFjcFNDQFnki541ekDGT4zOpgVoqueA4f1BLHI89M+2RFdul0JeZcsm8Jv0QEEVjrB4MWlYW/Qe4giUgu/ezM4RpAEcJSqggsg6OjC3KNNVyq2IagxWN0sVs5Sy+z81qimwJRCHYeEwyvq8wBJLouS5wafDGvZkcgtWWwNCTEWnLqmmHNq9+NrsoPJt1lWHQIySsh+tkL8itjMotgF/yNyF0QfjDJf1Yv8SzsxAGR2t9QKU+PJYqtEaHNd15d1pLAHAsbkZiF+uiejDI+zM/UqeLhguwh7XR4L0nY+nT+uWGDlsiD4t9tKYg1tVnYJLJyGIgC0Bh0TbuB6r087miq5YuC8bTqSQbQdPlQ17F7+WkNoHE997I98YDzoMoMTELGPDIl0Drnxna4laZh89kgUtyy7SeRLUii/ECV7/laawWYSFdDJqBiQbD27ypTgfrzPOcev76UcVwM6eoKNEAiTvSoxq6cmaARYXtleDGfzP55E67G09AWUVH0Pjnuh24/Njidw+oghBEMHhtWkMq6jDgTp91bbdNeQ0KsQTaOAUBBC3sDm25CSrF9UddIwcBrG0tF43RHESxP6ekqika3ycEFpIutLZcnhJhjuKIXFwGHwY5nZR3qoa8F/HWyey5vhrUXoxNDOrO/OvqrgRkqQxESl+Z6UlnPbrD1RvBnDYevU/l96RQkbz1psjYzf8vS9I3NgS5cDLUuXdQ28u6RXp5LbOQb+1EwvJPZUlC8c9JyexLLz2NrYHUorB2MFzWccaZ8VfMFHGnZ+zoRx0S3DKY2iV63e0T+zvw8r8/GIBQKnl1WEAgrvb+onW7Ibiztc7Hwi60wtNCrJUrM5co38ebvAEwo0Q3Xx5ACzLkfSDlvlQ7me03NvDE9L02PuSLOSi8H6DJpjXDj7+qQxwqTpkCI5aE0+I0ELy0rDqN13nxOxYT05a8u/fZmO6h5ugftd/DaiGMBXPH9qwpk5OLc/SfJ6mZLmj4WHOr+N2xBs3pI3J1AoPplnlWePMaigZCAbxfAUoTDobzEx4jb3VWqk7ggF7CT9rpx1iaU4Ix9Kab/ddPpecGdGHRlc/YWF9NaTgmeNSFbIFcyJngT67fL5m1Ss+sqoSYWjaG6Jzvko0l7up+EwN4u6mf/y/l3Jl2xMuCsIcYoVJfQZLeH3OgFEM2bfIITu2iWK95HcnhqdSJcso8SUKBMPtpkYJc+WQs7QCPbpWVHvYP+hcEd8en00kRC3ECMz5Xxc6LqNi9OLOVwsekFzGRnqkOjYJSw+B8LSnjKiOVKVsjo8BKT2TaiFNQ3YbY7twVguYAYBWCK3UEUjKoudGQtoT28sej2PDIQgdYyqbDlZIco2Wc/lkZqR8/v1RoGcIkxZ4xp7DoVi7jK5Ai6R/SvD36Qhg8rarButttU6dmv3kvKFSAmia2OafaQam53LVYKu+nyXSVjurXcdLmh8b6/uV51UtfTyfxuP5mX7rh7V6eiU3EudYooBkSJoqPwBvkTrHH5jksFOt0pPrW16BRrNK6Hqq5p8UBqdxFIQaBNlVKNkwU7MTYgy/fQQtJELddukinE4ero9QyrjEun4jJ9G9xGx2PicltvwcD+lMtAFyVASvnuUBaX4CDGSLhfC0KipOfM81VUz0YBoqMfqp6mr1E2vdW97jTvz1geehfYPwD1y9vv2zDVsfl8KPEl9IIe/bk8U81Z8R6rL6kssS62JB7yzjUNMdsrkQPNqjDAnR+l4mu2LlQ3l3BWwRXaZSO2oZJo4zZuoa0sg4ep99F+mdW3ei0BLMaxMlNYC9o9aEsQ2UilAI9drp+9SVD3TXR/cKs72zaorAFLK83ZH52qxB6QOJ5RD7yfqbko2KfaxeL6DK1xb/vRvDEWRQkwB3BU/am/vKiUBZFlrLuNzLvr8nJKgjY+KSi322IWtm3vQv9FbouBGaXg/YGHkQvpA/sZYfenX7TeDmelXszdVp8D2s
42 | 7 | u2tQWQ9LUFRJshB58s7lP95cwBxU62SNl6r2N+V0M1TmxnGZZn+BhcXpAWkNtbnC9WmdqocE20vkNAMDuqYG/111oiXn80pzsvA7Fed2exE6tx4cUtlYij3aXjx0JukFiAafOcW3H0p5szbSeR0mV/epb5gm61Y2f8iLAVAMYQROY/sGKZJmyHgWE1K/jYOIWXTyDDV+YL9mPARFnDp2/cH98BsfbtkCFF0nXpWCDtKaDZpPaf94yKMpOBiluqUkKDDWxpKYwXtY0t/xCT/3EJ89QFDL7LxHdJjKfkOshFg+q4PuezorLmCqGiQ6TbeQE2jNCOiGBpv4mTeKpeStxoNlubCE3lYODKNkJAIAbj4dJJ5CUPuSY1qze6QqMDScEoC2ZXlk5Dx6PmlnZX4xdQjN31VEbLQ0UvhoPCmizVS7jrs9VUiF0nKQl7sHXUYZR7q2IPmoqf5xDWNM4z24kd3Q3B4ZAI9CXArC8fIEA0Ei+87X9IbIPU/dnzi5EoruqMbuOQ8MSeIpSZ48CCQFkcksha4B8+cl7jRRMTUQwjM2grNI5txqxG+DPLH3YTJXXlzW1WsvDxxsEa8LedcqHXpW7yCxa31gKivp9R3L1CynL7yibnskv2PLsFvTJEk9eUqkJlZwE6lj9VBcvCWlgc4yGa3aN6M7NAzVn/StW79vpR2DnbZPrc7qvxQJquuIVkWiISh4lotqheoeqkqe3AT1TxvoeF1+qhmZwIWe9bVOOqaRR/7NuENU4ez7i7pX2EB/7Fvg9V1/QnOkIhDq6N3nYZByeaQQ420aLMZQ3zmycdvZLmhXmufeutWI/Tu5wRTq7MudxArJN2JEwP81D/kN+iWfPOKsLCkp75f7DufAQuiwTdotV3yExdjtrUZjPRzFqcpZv/vH2PrToSA6Wxoh1ParmpcAEccLx+9iNQJlPTvngGWJvzvYgyshVy92NgP/Fpvz0SHlOWc4qrVdVU5Sgnr5gjK44XzYzK7xWGfsoOeYoTRfNh8eEaDgvDJdMakePjXm2Kv7/b1SrP9StW3JYQjWN8odVAzYOM8aO+lgkUcZfIH8fbJJRia8PtYBL+O2vs88M9sLwXFoCJFXOx5CDNtFVKJjgRYTGzOwKOC6BHYT4jjFG9m86g5C2dOsPq4DYGbmxlKdjKd7WUXHhf1uAxl5LQRvYvycUdkHTMw3xbP1DX3fH5qmEpWuyn9eAFiqZtHtL1cEgMSkk9x3SRPNru6jQt00AzY8fM2vZ8t9HcIWFpBIG6sl1WYdxRtxLEchUyvdOuYXmC5Qqp5MHnoXvYkvH0kuKMFy10L6mrGrZuDIMO6qLfgTw25ME2dhsCTdsOMvqZNq17W4ZGJOMH7Rny3mAzsee+c5ytiwmpyewFUBG8T0EmVfC71GEYLfGnMb3a4ZcmMWwxa/a5ymQZj8njisAROr17/7TyJ2B/YuUX/HGxz5JoB/sREMPoMCJ4Rkl88yp838Yfa3KWkVqXgow5qtSpCSjF07Zuf6RggWGFzVFZILJYqaMl0wt8qG+iLgKuqjlkpMtT1M0XOEJXVs3yFyJq6GIRWpPA9MnpHUcaUsKF5NvwGCyAq4gAQ7RIcgVruoCh9QBVGu4vSnW2oixFdZf7HRvbwnCAkMjfDK/SZTWomh8MxHW5eYTjUGWpN2Mq9WztzNDKMoP/j5cnt1YFO1Omfv9nwkMJwDxj6tCrfIZZ1AHXx5lo97Zj4roEwOsD/3d8l/XAVZ8vrhV9dR/ynxeuEN5bhRwek2ZQK/vBTFkpO6eXkfoGHNBwznVJbxB0wX7jdil2YL0Lw8/uwgKeZ9FxoSdr1JsFMqO2xT/UdV+8DRYpl35uPqSMEM2SbIv6n1DWBj7Ex3IXJMYWmm4JCLUkcjmXuf12dALrOTXDJvXcnX1AyA84I3nArKZmGaPFfRcYOLvn9uuZyynOxQ2fzk56p/AhvR51LiYGuukhPJiqWc5Cs9SVjRwqQdirbAK8lKGPbgpts+
42 | 8 | xjpG24NDasFVpmEo5DpwXmSxaFpjejIrdzBsfGyfpUHmlNFPqpdZKywdOn9WlQa+Pu2wKobGI83DZwRSkB9bCwTRe0uDub/13vJ2QX2ajIiXAU5/8ZL8eGgP3xEOPyCPuW2KPjjAl39SMWkIrduXiv10n61UJVU5ILxiDu88eVmJmf/D37BrpEb1wa6OUEViX7UNlQBoXiiI+guToOdriyFdqlzZIaEvC1p7rC/Vs3N5sKcQXctEQdvUHnvRO2X6nAPcOhs/6j/vKi1rHbXe4ajuCwD6d6ZuyvP3h9kMVdTSqnDqN736hTSdGywIHvy+9o2Kq33UtvbUg13ILdyp3RlgCB4xdbo0EmhYF94YF6Z9vKCyCk8Yft5m7O1Rtg6gVtOpUAfcQOahdM24kY026eIZz2UM4XLAVroZyp6Fm4S+rBKXGHT1YAxrALU9RnoCy+0E0b9i/A3h5o8d8gW7gXJ7XMXf/TDxqU09J1HOMxoGzYpcPqt5EJCyJdBcnVrC2np+Z/lnCar+e1892ZNrKREL8yIt51Hy3hiyUqUcJweya/Vd0y0N7nduYY3WAAvvFoNsCRzmLmyvCWyMpoF9AYYUtjMMSfSIqg4g1MMbJ7DapCiwZBsDVfKL+K4l/GLGU8P6mkBI0W+/Z89jSZ4OW+SjmKNypw09ppEI8eud5Ao84SCVGXkNwohF58BGuLjV+nmSLiAgRtTUqrogcXVi3+r3n0/lAUc/R7Jp5r/kA3Tjop5lBhCX59IJOuIpUBu8B0jNN8JwPkmiwGYQc3ZaYJmr1mBsbNbnkQLIPhOQk56UmcvBbK/KCgr9UUCGe3WwfmoTaFnW4RE3g8bcUqCNwcWx+SNR2RlaeESRZJmYzaq3i6k1dxCPBbQjps1Ig8g9cucmeJ9go9NJM8MYq9O33CALHKi/LrCV1Iqros5GiKoH+zXQi2cOXskvzwkJ3Me9EP2Tn8YxwkSejArEEuIUKBJsD2kA/kTNP/GAZiG9tqhWY64Jkss2goPWW3TH1S27ex1S3RIBlgYrrbrVd8OifjgR6C0d/5hdNhlf15z8OEw8pb6RlOET4Vc61HZVueHhkmz9ZzFZA2CwCzeYQFbHshiSJHHc3OiA1rEj4BBFJGdkgK3KQuJQyfDut8aa9hyBBgf9mTuSnIq0eDYQ3QYI+0tVYc2usxHBH9whZah6Qxanah/c3ZdLxanN/9zWkuSz38UMuY+NaWT1pE83sp7b6Xa4igY1NbbMZJLm3XbxTpFx/GJ0/8607ONr5944k9Ul+DR+awmcOjPVMg+r/a6+GFg0SrcpTnez9yYuL4EKSxX0C4kbntKVe9haDWy3BpME1wDasmi7iNmypy+5WZxCC2klzUBApX1pcSXK6TdllSzbtO1gT/vYbbE1/Pg7eLueD8GWqj2CLLfjayqNkgMJJykDZ98KdMDnBAfhKPsVX89U4trz+l13UMb4gsj1yajgpihqEWLzc85Aa1mU0P2CpQIjTNHEniv3tSBJfIRm0TF+gogAy4UkYX6us7FjEYCN2qpGynsZo79YyZ1opMoTDMru1Hu/tv2G+bG6OAZYiqsh0QyMdH3yefqTIDe6qsQoQqxCOxHBqvzI05QeZVJH2Srnd3ML1fJh8UUD8F3ltgJcSNxFP6hUnK7EgZ8izqHWKZP8K0JPLysPH2FpjktvLekNkG8SKLYrf+fyGE/8c+OUG8VmQ+3pZHd/J4oHzZn/BdI+LcPQj8acXw6hKkh1ucQC3Tj2lCAWc1bkE+l6PUDZ1sJaAeqf430/xfoKbpkcdt5bfQOvuOk8g2iZ2xlH7iPxoG9gyiSHqYxSgYLpmEHDApYT1Z+NYQFjNkBljalXbfLRVlSgkn7h++OjninYMAjKizAEhYycJKfo9/9o6BjRdD3dLgeC/g+RLVtEYQAiCtq+dj6XVQC6TdzOPLUahI/6Rrd3qoP5Gk/kZrmvdnzKOdybjhhdGWG5EBcfzKMqDxPnDZZg9LUEySC5
42 | 9 | 1D6igcQlUE3iqWL5U4zg+Rw/daU5WKCCMQvN9iWI6EeFYUvBCfzQqmEXBdPbFcfOhp2g/2IrFdqYU+lcVoy4j8Wg8Y7laQ7O2MRPoYC3GY9T81Twyg4EclUUa8xUjvLZZH7CKehcB5RebyV1+Mc1aQZRk2yoaSv2nS9ARJ1zKrsg6wv8uIH5qxGCzqi3BDncKuw1Xw7SJh1vQBioKg3n8sgbMUFSRCBNkDcbdo9o2VXcbNUdCu0brFc8UIOwBY8rWNxQvf+T1qNgFhphLOPJmR8cxwLu32s/w3UpsH5U2xNm+BWP+6rZpbJK3y78RVKR6uNK3+bZxgXRvaYK7sOZcYDaEsF67A/GwSpa05YPFhNQEGRVGwUfL3Z4/BaCHNHP2v7jtWC52JQDqUSSrKfi9hrzgu6JNPeXLGbFTQNeuVBDZ2IQrLvRhQsckRuJh2t1Yqbre4BmPkJDNuJ08vTkMsmHEtNmx7vmG5NazL4PAVfWo+y/cPu/+gnQueE12SKOtcC/d25f8KnT8gpZxWbOMlkYfksvz9VpRXqLJWSvb/YuCedx8DQoP9e41/UYRRnDEro3qQ9/kNt9LaBmhfsDY7mBfAQIrZ4+3ibNogj/ERG3nk1wLYKvR3qWjjsa+vRN/peBPMSgu1Sxw1ceJoDd16jK+hknhr4Ac5pwCOIzK8vYQoM+Fp80ycfHbUmim/aFp55DiDsVa5S1Rpk2o6dmOMj9GUWE01k1pXq94hFWiCoCAGG1F8AvtqBRi3NrXgIPGJyGhDCR30ljOIOZInS1Ql0m38mlRYJIOFijqz3fS+DzuVmGUlCxmmH0JVoWXWKsxTuKPodub95WdGGyh+kID4MyXyppyUgJreyHXMgBQWNLe5r+Qr5TDTJJEJe8PzQlYgiZioYT/wan0vGeuGOr/Y6RxMyhSilUxVkBBmBww4KErMmK07s1NCf3VtfTJCA7tOTASBDweVy+HqDi7SyHZhvt6I/UPfW5bvlVwKSN+ABvTUWmTpePsd+hDjLY9YReA4OjdM5QuK4muxj8GXBxi4ClSXsNJVS6Db1wSjiZnYrnvUT9ZY4GjvTC1ObjnbW304WFnlMdnxe81v8416P54YV0uusQ1+5WvrdvHMTBEe3CWMB65NtzR/I7GAzRbSxCGx0M7Lkyf4ymijSthRx8YDsin74Un9zMrpMn8KJVG5Ki1vd1rYDR4OcvQXhLpOwH+XrfJe2zG9sBCC6OWZDeTcxWMBx9EN4vJIPG3fukMY6QEXop+Hth+v49g6357EinqNsXTRlevSaVZIGA7ZUuIBW1LJJTDpM6V0n2bCaFSk5WJzB1idadbpupvyFJj038WKhWLlO2rpUcABF8uMhu81FMeXxPoZCMRnyKeEWpJiPYTfeWUuIAQxuGQXU4R4QEKvgjhCnp9YsgDMl7+uvkdS4SbCPMbkAZDpR7+WgHDM/iLQGs9+iTIKsoys6GINZ8adID3+QsnFjSx6yOLvX1CVsmQ8tlYZw+2lzes4hKmBn18xsMCGTnkvOsuRvetcWQJEUT5+EC7W2gGZxSsoi+z3m8CwGqirIkOhdx7nA9C8NjXSyxnwgDLVr/dZAGh6rwNdPGK/p4rMWhKoRvVC+qI0YlIbbuETUbu15lOLo347smlqbtlwsAtt3EC4rRtMT/YfWL+zNdMjbU6rcvWVVVR9SSICwthuutKV8O4ZCLpVo7YpKWtDtdqtsCZqprsY0hGgc4eVvNJRPbp35Lhyc0muFryCZv5SVoOudJkM5KIM3iG0sDzGJ5k7DKO5QgMb0lFEHAnTHVVQ8f7Z208L86PNTMgSAZmcCptxmasbgXlAPFyt7+GwLmZXwzYK0t2OlNVPGubduOhWzXw7gouj/VWzS4orrbPB3k1h8krqcrDk/TlRD/h8q5T+jMbGjw4SEydXMfuQ5Tppkq0YgZbCcgUefFHfCCeTohQmfKTCIG5O84O3ewJuZY2DFaoFsHd2eyoy5gSJOdXX+ImPeL
(10 rows)
Here is... (truncated)